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Abstract

The 746th TS uses a ight reference system referred to as the Central Inertial

and GPS Test Facility (CIGTF) Reference System (CRS). Currently the CRS is the

modern standard ight reference system for navigation testing, but high accuracy

is dependent on the availability of GPS. A pseudolite system is currently being

developed to augment the CRS and supply the capability to maintain high accuracy

navigation under normal and jamming conditions.

Pseudolite measurements typically contain cycle slips and other errors (such

as multipath, tropospheric error, measurement noise) that can a�ect reliability.

Past work relied on the receiver-reported signal-to-noise (SNR) value to determine

whether or not a cycle slip occurred. However it has been shown that even when the

SNR is relatively high, a cycle clip can occur. To reduce the error in the pseudolite

measurements, the pseudolite system was integrated with an inertial navigation sys-

tem (INS). The integrated system detects failures through residual monitoring using

a likelihood function. Integrating the inertial sensor provides a means for a �lter to

maintain the reliability of the pseudolite data which, in turn, increases the integrity

of the resulting navigation solution.

An experiment was conducted using six pseudolites and a ground vehicle

equipped with a pseudolite receiver, and both a commercial-grade and tactical-grade

inertial systems. The inertial data was combined with both real and simulated data

to evaluate cycle slip detection performance.

Results from this experiment have shown cycle slips in the carrier phase mea-

surements were detected and corrected using both commercial-grade and tactical-

grade INS, but that performance, in terms of probability of detection and time to

detect, was improved with the higher quality inertial data.
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FAILURE DETECTION OF A PSEUDOLITE-BASED

REFERENCE SYSTEM USING RESIDUAL MONITORING

I. Introduction

1.1 Motivation

The development of the Global Positioning System (GPS) has led to improved

navigation accuracy over the years. Modern GPS receivers can achieve accuracy on

the level of centimeters depending on the processes used to calculate the navigation

solution. One issue that has risen with the growth of GPS dependency is the question,

\What will happen if GPS is not available?". This question has driven the need

for advancement in non-GPS navigation techniques. Depending on the operational

environment, there are a number of navigation solutions possible. For a testing

environment the highest possible accuracy is desired so that the navigation system

being tested is characterized properly. The US Air Force requires the capability to

test navigation system with a high level of accuracy, sometimes on the level of a

centimeter. Meeting the Air Force's accuracy requirements when testing in a GPS-

denied environment has lead to the development of a non-GPS high precision ight

reference system, such as a pseudo-satellite reference system.

The 746th Test Squadron at Holloman AFB developed the Central Inertial

Guidance Test Facility (CIGTF) Reference System(CRS) for testing aviation-based

navigation systems [17]. The CRS is based on a suite of sensors that include a GPS

receiver, inertial navigation sensors (INS), an interrogator, and an embedded GPS

receiver and INS (EGI). The level of precision the CRS is capable of depends on the

availability of GPS measurements. Thus, when testing in a GPS-denied environment

the CRS cannot maintain the desired level of centimeter accuracy. When GPS is
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denied the CRS relies on the inertial sensors and the interrogator, which can provide

accuracy in the order of 1-2 meters.

Recently, the 746th TS have started adding pseudolite measurements to the

CRS, augmenting the GPS measurements and enhancing the system during GPS

outages. There are still steps needed to advance the pseudolite system so the accu-

racy can be on par with the current precision of the GPS aided CRS.

Pseudo-satellites, also referred to as pseudolites, are ground-based transmitters

that can provide similar navigation measurements as GPS satellites. A pseudolite is

a time-of-arrival system that provides range measurements used to calculate position.

A pseudolite can operate on a di�erent frequency than the frequencies operated by

GPS. This allows the pseudolite system to be used in cases when GPS frequencies

are jammed. Past work at Holloman AFB by Raquet et al. [29] has shown the

pseudolites can be used as an inverted pseudolite system on an aircraft. An inverted

system would be used to track a vehicle using ground stations. Since pseudolites are

ground-based an entire network can be modi�ed and changed. This is not possible

for an entire GPS constellation, thus pseudolites were used in the development of

GPS [24].

Recent research at the Air Force Institute of Technology (AFIT) involving

pseudolite navigation has lead to increased accuracy and knowledge about how to

improve the ground-based reference system using a pseudolite system developed by

Locata Corporation [1] [8] [11] [30]. The prior research discussed di�erent ways in

how to reduce the error in the position calculation, when using pseudolite measure-

ments. Constraining the altitude can improve the horizontal position error when

using pseudolite measurements [1]. The troposphere error in the measurements can

be removed using a model [30]. Survey errors can also be reduced when estimated

as part of the navigation �lter [30]. There remain other errors in the pseudolite

measurements such as multipath fading and cycle slips. Past work has had di�culty

detecting the cycle slip errors in the phase measurements.
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1.2 Problem De�nition

Pseudolite phase measurements can contain cycle slips and slow growing er-

rors. These errors can cause di�culty resolving a navigation solution, due to the

randomness that the errors occur. Removing these errors will improve the reliability

and accuracy when calculating the pseudolite navigation solution.

1.3 Assumptions

The assumptions made in this research are listed below:

� A real-time navigation solution was not required. The navigation �lter was

post-processed from stored data.

� Floating point ambiguity estimation is required since integer ambiguity reso-

lution is not possible with the Locata pseudolite system. This is caused by the

mechanization of the carrier tracking loop in the Locata receiver.

� The pseudolite transmitter clock error bias is removed through the time lock

technique used in Locata's pseudolite system [5].

� The far-near problem with pseudolite systems is handled through the multiple

access pulsing technique implemented in the Locata transceivers [5].

1.4 Proposed Solution

Cycle slips and slow growing errors can be detected and removed by using a

failure detection algorithm inside a Kalman �lter. The navigation �lter will consist

of integrating a pseudolite system with an inertial navigation system. The inertial

system is tightly coupled with the pseudolite measurements to achieve the maximum

potential for detecting failures. Single di�erenced carrier phase measurements will

be used to eliminate receiver clock errors. The failure detection algorithm will be

designed to detect and remove slow growing errors along with cycle slip errors that

occur commonly in pseudolite-based phase measurements.
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There are two failure detection algorithms proposed for this e�ort:

� Algorithm 1 involves using the residual calculated in the Kalman �lter during

the update portion of the �lter algorithm. The likelihood of failure is detected

by evaluating the magnitude of the residual relative to the residual standard

deviation. This is commonly referred to as \residual monitoring" [20].

� Algorithm 2 implements a moving window as the likelihood function to de-

termine the probability of a failure. The moving window uses the natural

logarithm of the probability density function of the residuals over time. The

window is made up of N samples, requiring previous information. The natural

logarithms of the probability density functions are summed over the course of

the window giving the likelihood value. When a failure is present in a measure-

ment the moving window will become more negative. Setting a static threshold

is used to detect a failure [20].

1.5 Related Research

1.5.1 Pseudolite-Based Reference Systems. A mobile pseudolite-based ref-

erence system, developed by the 746th Test Squadron at Holloman AFB, demon-

strated positioning accuracies of 10 � 30cm [29]. This was a novel approach using

an inverted pseudolite design, where the pseudolite was attached to a mobile vehi-

cle and the trajectory was tracked by a network of receivers. This demonstration

focused on the use of a ground vehicle as the mobile unit. The pseudolite was

observed by multiple non-coplanar receivers strategically laid out to provide good

system geometry. Two types of inverted reference systems were demonstrated and

compared. The di�erence between the two systems has to do with the choice of

the master transmitter|one used a pseudolite-based reference system and the other

used a satellite-based system. The master pseudolite was used as a reference by the

other locations in the network of receivers. Both �xed integer and oating point

carrier-phase ambiguity resolution was attempted. An iterative batch least squares
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algorithm was used to solve for the oating point ambiguities. For this case the

oating ambiguity resulted in a more accurate position. This was allocated due to

measurement errors and also receiver surveying error [29].

Bouska developed a pseudolite simulation that showed an accuracy of approx-

imately 10-15 centimeters [8]. This work focused on describing and estimating the

errors in the pseudolite measurements. In Bouska's simulation, the ambiguities of

the pseudolite phase measurements were estimated using a pseudolite only system.

The ambiguities were estimated as oating point values.

Ground-based navigation systems have been known to have a de�ciency in

the vertical geometry. Crawford visualized the vertical geometry of the pseudolite

network through the vertical dilution of precision (VDOP) measurements [11]. One

way to correct the lapse in vertical geometry would be to use an orbiting pseudolite

over the area of interest. This would correct the geometry of the pseudolite network.

The vertical position errors can also lead to errors in the horizontal positioning

solution [1]. Another technique to correct the vertical issue would be to compensate

the vertical channel without changing the geometry of the pseudolite network. Amt

developed and implemented �ve approaches that constrain the vertical channel [1].

The results of this work lead to increased accuracy in the horizontal channel.

Amt demonstrated the position accuracy of the pseudolite-based reference sys-

tem when using air vehicles [2]. The navigation system was solely based on pseudolite

receivers that provided carrier-phase measurements. The position was resolved using

a batch least squares algorithm. The least squares method used the pseudoranges

to estimate a nominal trajectory for initialization. Then a batch process was used

to estimate the ambiguities in the carrier-phase measurement. The ambiguities were

resolved using oating point values|this is required for Locata-based carrier phase

measurements. The �nal step of the algorithm presented describes how the carrier-

phase measurement is used to resolve position with the estimated ambiguities [1].
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Shockley showed the pseudolite system is capable of centimeter level accuracy

position determination when unmodeled errors are estimated and mitigated [30] [31].

The errors consisted mostly of a troposphere bias, accounting for 12 centimeters

of horizontal position error [30]. The error due to the troposphere is essentially

removed through the use of a model based on the current atmospheric conditions

and trajectory. The troposphere errors are contained in both the phase and code

measurements [30].

Kee et al. showed how the pseudolite signals are subjected to linearization

errors when using a �rst order approximation [10]. The line-of-site vectors are lin-

earized, using a �rst order Taylor series expansion, as part of the measurement model.

This type of measurement model is typically used in a least squares or a Kalman

�lter-based navigation approach. The GPS signals are also processed in the same

manner as the pseudolite measurements, but are subject to less error due to lin-

earization, since the distance of the satellites are much further away from a receiver

than the pseudolite-based transmitters [10].

The use of pseudolites as a ight landing system has been studied for the

purpose of augmenting current navigation systems to achieve high precision land-

ings [13] [12]. Mostly the pseudolites have been augmented with existing sensors

ranging from GPS, GLONASS, barometers, inertial sensors, and radar measure-

ments. One issue with the use of a pseudolite aiding in a landing situation is the

ability to lock on to the pseudolite and receive information before the approach.

Henzler and Weiser discussed the requirements of a pseudolite system necessary for

the use in a ight landing system [13]. Another issue with the pseudolite they used

was dealing the near-far problem which is addressed in Section 2.5.3 of this research.

Gray and Maybeck focused on the FAA requirements necessary for achieving a pre-

cision approach landing using a pseudolite [12]. In their work, it was shown through

simulation that the addition of a pseudolite aided in the geometry of the navigation

system.
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Wang et al. suggested the augmentation of an existing GPS/INS system with a

pseudolite for aerial photogrammetry [18]. The inertial sensor was tightly integrated

with the pseudolite measurements through an extended Kalman �lter. The addition

of a pseudolite, to areas where the aerial surveying is being conducted, o�ered a

better geometry then the GPS/INS system alone. The pseudolite measurements

were demonstrated to be sensitive to troposphere errors [18].

Lee improved upon existing GPS/INS technology by integrating pseudolite

measurements [34]. The results of this work showed the geometry was improved

through the addition of a pseudolite. It was noted the pseudolite contained large

residual errors due to multipath [34].

1.5.2 Locata Pseudolites. Locata Corporation developed a pseudolite-

based reference system that o�ers new capabilities by solving the majority of the

issues previously mentioned, including the near-far problem, transmitter time bias,

and multipath e�ects. Additionally, the Locata pseudolites operate at a non-GPS

frequency, so they are ideal for situations in which GPS frequencies are denied.

Barnes et al. discussed the bene�ts of the Locata system [5] [4] [6]. The Locata

system resolved the timing issues using a TimeLoc technique that synchronizes the

transceivers to one master clock [6]. The Locata-based system has been developed

to achieve centimeter level accuracy [4], similar to the accuracy level of carrier phase

di�erential GPS. Also, this system has been used indoors with an accuracy of 20cm

and less in a kinematic experiment [5].

1.5.3 Pseudolite-Based Navigation for Indoors and Urban Canyons. Wang

et al. expanded on an existing GPS/INS-based navigation system by integrating

with pseudolite-based measurements to improve the geometry of the GPS system in

the case of an urban canyon [35]. An urban canyon is when the buildings in a large

city render the GPS signals useless through either reecting the signals or completely

blocking the signals. Adding pseudolites in an environment like this can add to the
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geometry and decrease the number of required GPS signals necessary to solve for a

position solution [35].

Indoor use of pseudolites for navigation has been shown to be possible, but is

subject to large amounts of multipath fading when used in a standalone con�guration

[3] [28] [16]. Adding an INS to aid in the pseudolite receiver can help mitigate the

multipath e�ects. The work in [3] has shown the use of ultra tight integration

improves the use of pseudolites for indoor navigation. Also suggested in this work

is the use of a medium quality inertial sensor (1 deg/hr gyro bias and 10 milli-

g accelerometer bias) in place of a low quality inertial sensor. Multipath can be

mitigated inside the frequency lock loop in the receiver through the use of a fading

channel model [15]. The indoor fading model uses the �lter estimates inside the

receiver to aid in rejecting multipath.

Petrovski et al. focused on indoor navigation with a standalone pseudolite

system [28]. They focused on resolving the initial position using the pseudoranges

and also resolved the ambiguities inside of the �lter. The algorithm presented was

designed after similar GPS ambiguity estimation techniques. Kao also presents an-

other relative motion ambiguity estimation technique for indoor navigation [16]. The

di�erence in this work is the pseudolites have been tightly integrated with inertial

measurements for improvement of indoor navigation. The inertial measurements aid

in the ambiguity estimation of the carrier phase.

1.5.4 GPS/INS Integration. Zhang et al. presented the comparison of the

HG1700 and the LN200 inertial sensors aided by kinematic di�erential GPS [37].

The position error of dead reckoning navigation was analyzed with the two inertial

sensors and showed the position error will grow to 10cm for a 2 second outage time

using the HG1700. The LN200 can hold the error to less than 10cm for up to a

4 second outage. The di�erence in inertial sensors becomes more apparent as the

outage times become longer. The HG1700 reaches 1.8 meters in error with a 26
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second of outage, while the LN200 can have an outage for 40 seconds for the same

error [37].

Petovello presented the bene�ts of tight inertial integration with GPS measure-

ments over loose integration when estimating oating point ambiguities [27]. The

tightly coupled system resolved the ambiguities faster and more accurately than the

loosely coupled or the GPS-only system. This became more obvious as GPS outages

became longer. In the case of a 40 second outage, the tightly coupled system yielded

a 10cm improvement over the loosely coupled version. The work also showed the

increased reliability when using an integrated system over a GPS-only method.

1.5.4.1 Reliability Testing. Petovello discussed the integration of

GPS with an inertial navigation system [26]. The inertial system is used to improve

the reliability in the system through failure detection. Petovello also discussed the

tradeo�s of using a tightly coupled inertial model vice a loosely couple or ultra-

tight integration. Reliability is used to assure the quality of the observation inside a

Kalman �lter. A more complete statistical reliability, using GPS measurements, was

developed to work in conjunction with a Kalman �lter [25] [26]. Statistical reliability

provides a method to detect if a measurement is error free. Having the ability to

detect errors in the measurements could prevent the Kalman �lter state estimates

from becoming corrupted. Statistical reliability uses the measurement covariance to

analyze the measurement errors and not the observations directly. Because of this,

the internal reliability can be shown to increase as the measurement updates are

processed, and thus the state covariance reduces in uncertainty. The resulting error

statistic from the internal reliability test is referred to as the Minimum Detectable

Blunder (MDB). The MDB is based on the geometry of the system, measurement

covariance, process noise, and covariance of the state estimates. The MDB is then

propagated to calculate the error in the state estimates caused by the undetected

errors, described as an external reliability test. The resulting statistic was referred to

as the protection level. The protection level can be used as a threshold to detect when
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the state vector is no longer an accurate estimate. Wieser et al. also implemented

this failure detection algorithm, described in [26], using a real-time kinematic GPS

and INS system [36]. Wieser's work focused on failure detection, identi�cation, and

model adaptation. The likelihood ratio was used in this work to test possible failure

scenarios.

1.5.5 Residual Monitoring. An integrity monitoring algorithm known as

Autonomous Integrity Monitored Extrapolation (AIME) has been shown to provide

99:999% continuity when no GPS signals are available [14]. FAA requirements for

precision landings were the driving force behind the development of this algorithm.

AIME has been developed to use all the information from the sensors onboard an

aircraft. AIME has been shown to detect multiple failures simultaneously. AIME

was used to detect multiple satellite failures by using an independent inertial-based

navigation system. The algorithm specializes in detecting errors that quickly decor-

relate over time (two minutes or less), versus slowly decorrelating errors. This is

because AIME uses an independent inertial navigation system (INS) to compare

with the navigation solution and in turn determines when an error is present in an

observation. To keep the INS independent the measurements are saved over some

period of time before the INS is updated allowing the measurements to be veri�ed,

thus preventing the �lter from becoming corrupted. The AIME algorithm distributes

the averaged residuals using a chi square test with n degrees of freedom, where n is

equal to the number of GPS satellites current in the observation [14].

Another error detection algorithm is known as the rate detector algorithm,

developed by Umar Bhatti [7]. This algorithm is an integrity monitor based on the

rate of change of the residual errors in the Kalman �lter. The algorithm focuses

on detecting the slope of the growing errors, which are referred to as test statistics.

The test statistics are derived from analyzing the changes in the residuals. This

work is derived from two other integrity monitoring techniques commonly used|

GPS integrity channel, and Receiver Autonomous Integrity Monitoring (RAIM).
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The rate detector algorithm is based on an external aiding by an inertial navigation

system. This monitoring technique was developed to be used in conjunction with

Micro Electro Mechanical Systems (MEMs) inertial sensors. The algorithm was

integrated by using an INS tightly coupled with GPS measurements. This algorithm

has been simulated to show a capability to detect slow growing errors, speci�cally

focusing on slow growing errors in GPS pseudorange measurements [7].

1.6 Thesis Overview

Chapter 2 presents the background information used to develop and imple-

ment the failure detection algorithm. This consists of a detailed explanation of the

Kalman �lter equations, modeling of pseudolite measurements and the basics of in-

ertial navigation. The last section will discuss the basis of failure detection in a

Kalman �lter.

Chapter 3 shows the development and implementation of the navigation refer-

ence system. The navigation �lter is developed as an error state extended Kalman

�lter. The �lter is present in two sections; the �rst discusses the INS error model used

in the �lter. While the second section focuses on the pseudolite measurement model.

The chapter �nishes with a discussion on the failure detection implementation and

how the �eld experiment and simulation were accomplished.

Chapter 4 presents the results of the failure detection algorithm, based on the

�eld experiment and simulations. A comparison of inertial sensors is shown in detail

focusing on the statistics of failure detections. The results of both failure detection

algorithms are compared in terms of detection rate, detection delay, and false alarms.

Chapter 5 concludes the results of the failure detection algorithms and the

impact the quality of inertial measurements has in the detection of errors. Finally

enhancements to the failure detection algorithms are o�ered along with future e�orts

to expand on this research.
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II. Background

This chapter presents the background information that will be used to develop the

navigation �lter and failure detection algorithm. The inertial sensor mechanization

will be discussed in detail. The Global Positioning System (GPS) will be presented

to describe the basis of the pseudolite navigation system. The Kalman �lter will

be described while presenting the algorithm for the regular Kalman �lter and the

extended Kalman �lter. Finally, the idea of failure detection and previous methods

used with the Kalman �lter will be described.

2.1 Reference Frames

Reference frames are used to describe the vehicles position, velocity, and at-

titude as it navigates along a trajectory. Inertial navigation is based on Newton's

laws of motion which are approximated in the inertial frame. Mechanization of the

inertial measurements requires knowledge of the body frame and local navigation

frame in addition to the inertial frame. The pseudolite measurements are used to

calculate a position in the local navigation frame. The positions of the pseudolites

are known in the Earth centered Earth �xed frame. The reference frames described

below and shown in Figure 2.1 are presented with more detail in [32].

2.1.1 Earth Centered Earth Fixed Frame. The Earth centered Earth �xed

frame (ECEF) has an origin at the center of the Earth. The z-axis points out the

North Pole and the x-axis extends through where the Greenwich meridian and the

equator intersect. The ECEF frame is �xed to the Earth, thus it rotates with Earth.

2.1.2 Inertial Frame. The origin of the inertial frame (i-frame) is co-located

with the ECEF frame at the Earth's center. The z-axis of the i-frame also extends

through the North Pole (spin axis). But unlike the ECEF frame, the i-frame is a

�xed frame that does not rotate with Earth. The xi-axis points towards the �rst
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Figure 2.1: The Reference Frames are shown in Comparison to Each Other and
Earth.
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star in Aries. The inertial frame is where Newton's laws are approximately de�ned

thus this is where the inertial measurements exist.

2.1.3 Body Frame. The body frame is used to reference the vehicle of

interest. The origin is located at the center of the vehicle with the x-axis pointing

out the front, the y-axis is pointing out the right of the craft, and the z-axis is

pointing down, shown in Figure 2.2. This frame also de�nes the roll, pitch and yaw

of the craft.

2.1.4 World Geodetic System 84 (WGS84). The world geodetic system is

used to de�ne coordinates in latitude, longitude, and altitude. WGS84 is not a �xed

axis system such as the frames discussed above. The WGS84 is a datum used to

calculate the coordinates from a known ECEF position.

2.1.5 Local Geographic. This category of reference frames includes local

coordinates such as the East, North, Up Frame (ENU) and the North, East, Down

Frame (NED). This type of reference frame is commonly referred to as the navigation

frame. The NED frame is shown in Figure 2.1.

2.1.6 Reference Frame Conversions. Each of the frames are necessary to

describe the multiple sensors in a navigation system. When a number of reference

frames and coordinate systems are implemented in the same navigation system the

need to convert between references is necessary. The following is an example of

a navigation system that contains an inertial sensor, GPS and pseudolites. The

inertial system measurements come from the inertial frame. The inertial system

is then mechanized into the NED frame. On the other hand GPS and pseudolite

measurements are derived in the ECEF frame and typically expressed in the ENU

frame or WGS84 coordinates.

To transform between two frames a rotation (and sometimes translation) is

required. This is true when converting between the ECEF, ENU, and NED frames.
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Figure 2.2: The Body Reference Frame, Located Within the Vehicle.

The rotation from one frame to another is accomplished by using a direction cosine

matrix (DCM).

2.2 Inertial Navigation System

An inertial measurement unit (IMU) is a device used in navigation to solve

for the position, velocity, and attitude in a self-contained passive sensor. IMUs are

constructed using two types of sensors|gyroscopes and accelerometers. To observe

three dimensions of translation and rotation three of each type of sensors are pack-

aged together to make an inertial measurement unit. Strapdown inertial systems are

commonly used today, since they tend to be smaller and more reliable than other

types of inertial systems. A strapdown system includes IMUs rigidly attached to

the body of the object in interest. A strapdown system allows the inertial system to

rotate with the body frame and around the local navigation reference frame. Plat-

form systems are also used less commonly on systems today. A platform system

is stabilized in the local navigation reference frame or some other de�ned reference

frame, does not rotate with the body frame, using gimbals, similar to how a compass
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works. This technique is used less frequently now since it requires a large amount of

maintenance and typically results in a larger, more complicated system.

The gyroscopes in an IMU measure the angular rate from the inertial frame to

the body frame. A single gyroscope measures the angular motion around one axis.

Thus there are three gyroscopes aligned orthogonally to each other. The result from

integrating the data from the gyro yields the Euler angles describing the attitude

of the object. The angular body rate with respect to the navigation frame (!bnb) is

found from the di�erence of the body rate measured by the IMU with respect to the

inertial frame (!bib) and the estimated Earth rate expressed in the navigation frame

with respect to the inertial frame (!nin), transformed using the navigation to body

transformation matrix (Cbn), Equation (2.1).

!bnb = !bib � Cbn!
n
in (2.1)

Accelerometers, despite their namesake, measure speci�c force in the body

frame and not the acceleration directly. To �nd acceleration, in the i-frame, (ai)

form the output of an accelerometer, a gravity model is needed to remove the gravity

component (gi) from the speci�c force (f i).

ai = f i + gi = Cibf
b + gi (2.2)

where Cib is the body frame to the i-frame transformation matrix [32].

The WGS-84 gravitational model [22] is commonly used to model the gravity

in navigation systems. The inputs to the gravitational model are latitude, longitude

and height above ellipsoid. The output of the accelerometers when integrated results

in the velocity of the object. A second integration resolves the position. Together

the accelerometers and the gyroscope can give valuable information of where the

object is currently, its current velocity, and the attitude of the object.
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Inertial navigation systems are susceptible to drift over time. The drifts corrupt

the acceleration and angular rate measurements. They are inherent to every inertial

sensor. The size of the drift can be reduced depending on the type of inertial system.

Drift is caused by white noise inside the raw measurements. Along with a drift,

inertial systems can also be subject to a constant turn on bias.

If the gravity component is not removed completely a navigation system can

drift in any axis in the navigation frame. This is typically caused by removing to little

or too much of the gravity parameter from the accelerometer using Equation (2.2).

This error is caused by a di�erence from the estimated gravity from the model to the

actual gravity. To reduce this error an inertial navigation system can be integrated

with an altimeter to resolve the error in the z-axis of the navigation frame.

Inertial navigation systems come in many di�erent shapes and sizes and de-

pending on the error allowable in the system being designed the proper INS can be

chosen. Large airplanes typically use advanced ring laser inertial systems known as

navigation grade systems. This type of INS has an angular drift error of approxi-

mately 0.01 deg/hr. Tactical grade inertial systems are typically found on systems

that only need to use a navigation system for a short time (several minutes) or do

not require the precision of a navigation grade system. Tactical grade IMUs have a

drift on the order of 1 deg/hr. Another class of IMUs is known as commercial grade.

These exhibit a drift rate of 10+ deg/hr. This error is highly undesirable but the

commercial grade is fairly inexpensive.

2.2.1 Inertial Navigation Implementation. The mechanization model, in

the local level navigation frame, using inertial data is depicted in Figure 2.3. De-

veloping a model allows the opportunity to implement error modeling. An error

model of an IMU is important since the drift errors and bias need to be described

and removed from the IMU. Also a model allows for the inertial measurements to

be integrated with other means of navigating such as GPS.
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Figure 2.3: The Inertial Mechanization Model shown for the Local Level Frame.

The �rst step when working with inertial measurements is to remove the bi-

ases from the accelerometer, f bins, and gyroscope, !
b
ibins

, measurements as shown in

Equation (2.3) and (2.4). The raw inertial measurements contain white Gaussian

noise, wfins and w
!
ins.

f bins = f b + abias + w
f
ins (2.3)

!bibins = !bib + !bias + w
!
ins (2.4)

A bias can be modeled as a constant or a drift. If modeled as a constant, the bias

can be removed for an entire data set by calculating the average error over period of

time when there is no motion, such as an alignment period. However the bias will

drift over time. The amount of drift depends on the type of IMU being used and

the length of navigation. For a more accurate model the bias can estimated as a

drift, shown as abias and !bias. The drift is modeled as a �rst order Gauss-Markov

process [33], driven by white Gaussian noise, wabias, shown in Equation (2.5). This

model allows the biases to be estimated inside a Kalman �lter.

_abias = �
abias
T

+ wabias (2.5)

where T is the time constant.

The strapdown mechanization for raw inertial data is described in Figure 2.3

[32]. It is required that the attitude be calculated prior to being able to resolve

2-7



the accelerometer measurements into the navigation frame. This is done by the

attitude computer using the gyro data to calculate the change in attitude from

the last known point. The attitude computer in the IMU mechanization calculates

the transformation matrix (Cnb ). Also the attitude computer requires the initial

description of the attitude and position of the object.

_Cnb = Cnb 

b
nb (2.6)

where Cnb is the body to navigation frame rotation matrix and 

b
nb is the skew

symmetric matrix


bnb =

26664
0 �!z !y

!z 0 �!x
�!y !x 0

37775 (2.7)

where !x, !x, and !x are the angular rates around the x, y, and z axes. Since

inertial measurements are discrete, a di�erence equation can be used to calculate

the direction cosine matrix (DCM) at t + �t. Equation (2.8) is only valid when the

change in angle is relatively small.

Cnb (t+ �t) = Cnb (t)[I3x3 + �	] (2.8)

where

�	 =

26664
0 �� ��

� 0 ���

��� �� 0

37775 (2.9)

The variables ��, ��, and � represent the body rates as measured by the gyroscopes

from time t to time t+ �t.

The next step is to use the heading information just calculated to rotate the

inertial measurements from the body frame to the navigation frame. Also since the

accelerometer is reading speci�c force and not acceleration, the gravity term will also
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need to be removed at this step, as given by

an = Cnb f
b � [2!nie + !nen]� vne + gn (2.10)

where !nie is the Earth turn rate with respect to the navigation frame, !
n
en is the rate

of turn of the navigation frame with respect to the Earth frame, and vne is the ground

speed expressed in the navigation frame. The coriolis term will be removed next.

The coriolis e�ect is when in the inertial frame of reference the ight path appears

to be a straight line, but in the Earth frame the ight path appears to curve. The

coriolis correction compensates the ight path to the Earth rotation rate in respect

to the navigation frame.

At this point the raw accelerations (an) are integrated once for velocity (vn),

and again to calculate position (pn). An inertial sensor requires knowledge of the

starting location. Without an initial velocity or position the accelerometer cannot

be mechanized to solve the navigation solution.

2.3 Global Positioning System

The Global Positioning System (GPS) is made up of a constellation of satellites

that transmit signals used for navigation and timing. GPS is known as a time-of-

arrival (TOA) system, meaning that the range of the signal is calculated based on

the time it was received. The transmit time is contained in the navigation message

of the signal transmitted. Since the satellite clock and receiver clock are not syn-

chronized, there will be errors based on the timing in a GPS range, so this type of

measurement is referred to as a pseudorange. GPS satellites are identi�ed by the

unique pseudorandom noise (PRN) they transmit.

GPS currently operates on two di�erent carrier frequencies, L1 (1575.42 MHz)

and L2 (1227.6 MHz). The future system will include a third frequency referred to

as L5. The GPS constellation is made up of between 24 to 30 satellites.
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GPS provides three measurements that can be used in a receiver to compute

navigation information. These measurements include Doppler, carrier phase, and

pseudorange measurements. There is a fourth measurement when using a GPS

system called carrier-to-noise density, but is used to determine the quality of the

measurements from a speci�c PRN. The carrier-to-noise density, C/N0, is the rela-

tive power from one satellite to receiver. Pseudoranges alone provide a navigation

accuracy of about 10 meters. When carrier phase measurements are used for posi-

tioning, they can provide an accuracy of 10cm and better. To achieve carrier phase

navigation, ambiguities will need to be resolved. This can be done in many ways but

typically the pseudoranges are used to initialize the ambiguities in the least squares

solution or the Kalman �lter solution. Over time the residual errors are used to

resolve the ambiguities to �xed integers [21].

The pseudorange measurements for GPS contain errors from multiple sources,

shown in Equation (2.11).

� = r + T +
I

f 2
+ c�trec � c�tsv + v� +m� (2.11)

where

r = true range measurement (meters)

T = tropospheric delay (meters)

I

f 2
= ionospheric delay (meters)

c�trec = clock error due to receiver (meters)

c�tsv = clock error due to satellite (meters)

v = measurement noise (meters)

m = multipath error (meters)
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The carrier phase measurement for GPS is much more accurate then the code

but can be di�cult to use since the ambiguities, N , are unknown. Even when the

ambiguities are resolved they can still su�er from cycle slips. The ambiguities in a

GPS system are �xed integers. The carrier phase is modeled as

� =
1

�
(r + c�trec � c�tsv + T � I

f 2
+ v� +m�) +N (2.12)

where � is the wavelength of the carrier and N is the ambiguity (cycles). The

Doppler measurement is the derivative of the carrier phase. The Doppler can be

used to calculated velocity relative to the satellite.

2.3.1 Di�erential GPS. Di�erential GPS is used to reduce common errors

in GPS measurements. There are two commonly used DGPS techniques|the �rst is

single di�erencing the measurement and the second is double di�erencing the GPS

measurements.

A single di�erence GPS measurement uses one satellite and two receivers, with

one receiver being a reference receiver at a known location. Single di�erencing is

done to remove common errors such as satellite clock error. A single di�erence GPS

measurement scenario is depicted in Figure 2.4. Single di�erencing also reduces

the error contributed by the ephemeris, ionosphere, and troposphere. However the

amount of error that is canceled in the di�erence depends on the baseline distance

between the two receivers. For a short baseline, the atmosphere and ephemeris errors

can essentially be cancelled out using single di�erencing [21]. The de�nition of a short

distance in terms of baseline can vary depending on the atmosphere e�ects [21]. The

single di�erence pseudorange measurement is represented as

4�A1;2 = �A1 � �A2 = rA1;2 + TA1;2 +
IA1;2
f 2

+ c�t1;2 + vA1;2 +mA
1;2 (2.13)
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Figure 2.4: Example of Single Di�erenced GPS Measurements.

The corresponding single di�erence phase measurement is represented as

4�A1;2 = �A1 � �A2 =
1

�
(rA1;2 + c�t1;2 + TA1;2 �

IA12
f 2
+ vA1;2 +mA

1;2) + �N
A
1;2 (2.14)

Double di�erencing the measurements is used to remove the clock error in

the receiver. Double di�erence GPS measurements require two satellites as shown

in Figure 2.5. The single di�erence measurements calculated previously are now

subtracted from each other. The double di�erence pseudorange is calculated using

the single di�erence Equation (2.13). The resulting double di�erence equation is

54 �A;B1;2 = 4�A1;2 �4�B1;2 = rA;B1;2 + TA;B1;2 +
IA;B1;2

f 2
+ vA;B1;2 +mA;B

1;2 (2.15)

and the double di�erence carrier phase measurement becomes

54�A;B1;2 = 4�A1;2�4�B1;2 =
1

�
(rA;B1;2 +T

A;B
1;2 �

IA;B1;2

f 2
+vA;B1;2 +m

A;B
1;2 )+54N

A;B
1;2 (2.16)

The ambiguity for both the single di�erence and double di�erence is still maintained

as a �xed integer.
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Figure 2.5: Example of Double Di�erenced GPS Measurements.

2.3.2 Carrier Phase Ambiguity Resolution. There are a multitude of

approaches when it comes to resolving the ambiguities in carrier phase measure-

ments [21]. The most common and straightforward method is to use the pseudor-

ange measurement to limit the search area and to model the ambiguity as a constant.

This work is not focused around integer ambiguity resolution but rather oating point

ambiguity estimation.

2.4 Pseudolite-Based Reference System

2.4.1 Pseudolite Basics. The idea of pseudolites is based on the need to

create a reference system similar to GPS for ground-based testing and developing.

Since pseudolites are smaller and ground-based they are much more cost e�cient

then GPS when it comes to hardware development, implementation, and testing. In

fact GPS was tested and developed through the use of pseudolites [24]. Pseudolites

are a time-of-arrival (TOA) positioning system. Recently, pseudolite packages have

decreased in size and increased in capability allowing for a network to be easily setup

in a local con�guration. The Locata Corporation has developed a pseudolite network

capable of achieving navigation accuracy similar to DGPS capabilities. Prior work
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has shown this system can achieve a level of accuracy of sub-decimeter positioning

error [2] [30]. But pseudolite systems are still subjected to other errors that are

associated with ground-based systems, such as multipath fading, vertical geometry,

near-far case, nonlinear approximation and measurement errors [30] [10] [11].

Pseudolite systems typically have a higher nonlinearity in the transmitted sig-

nals than GPS [10]. This is due to the geometry of the network. The distance away

from Earth allows the GPS signals to have less nonlinearity issues than that of a

ground-based system that is transmitting on the level of kilometers away. A range

measurement can lie anywhere on a circle around the pseudolite. Since the ranges in

this case are short compared to GPS, the Taylor series expansion of the measurement

is only valid for a small region. This will contribute to �lter divergence if the errors

grow too large or have extremes dynamics in the system. In GPS the distance is

relatively long (20,000 km), thus the region for the linear approximation is larger and

allows for convergence in a �lter with larger errors. When initializing the position

solution with a pseudolite system, it is important to use knowledge of the starting

location.

The pseudolite measurements are similar to GPS measurements, except the

pseudolite measurements do not contain an error due to the ionosphere. This is due

to the fact the pseudolite signals do not travel through the ionosphere since they are

ground-based.

2.4.2 Locatalites. Locatalites are a speci�c type of pseudolite developed

by the Locata Corporation. Locata has developed a timing technique referred to as

TimeLoc which is used to synchronize their pseudolite networks [5]. This is done by

synchronizing the clocks of all transmitters to one pseudolite that is described as the

master Locatalite. This results in the following pseudorange measurement

� = r + T + c�trec + v� +m� (2.17)
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and carrier phase measurement

� =
1

�
(r + c�trec + T + v� +m�) +N (2.18)

Since the Locata system has already removed the transmitter clock bias error, there is

little value to double di�erencing the measurements. Instead a single di�erencing of

the pseudolite measurements is performed to remove the receiver clock error. Figure

2.6 shows two signals being transmitted to one receiver. Subtracting the signal of

transmitter B from transmitter A results in a single di�erence measurement with

the receiver clock removed. For this example, it is assumed the frequency of the

measurement is the same. Locatalites have the capability, however, to transmit on

multiple frequencies in the 2GHz ISM band [4].

4�A;B = 4rA;B +4TA;B +4vA;B� +4mA;B
� (2.19)

and

4�A;B = 1

�
(4rA;B +4TA;B +4vAB� +4mA;B

� ) +4NA;B (2.20)

2.4.3 Measurement Errors. As shown above, the pseudolite measurements

contain errors similar to GPS measurements. The �rst major di�erence between

the two is the pseudolite measurements do not travel through the ionosphere, thus

troposphere is the only major atmospheric error. Also the Locata system transmitter

clocks have been synchronized, removing the transmitter clock bias. The pseudolite

pseudorange measurements contain errors from troposphere, multipath, white noise,

and receiver clock errors. The carrier phase measurements contain the same errors

as the pseudoranges and in addition require an ambiguity in each measurement to

be estimated. The receiver clock error can be removed by either using a model

and estimating the clock bias or using single di�erence measurements to remove the

receiver clock error.

2-15



Figure 2.6: Pseudolite Range Example, using Two Signals.

A problem that arises in pseudolite systems due to transmitted signal power

is referred to as the near-far problem. The near part of the near-far problem occurs

when the strength of one signal is such that it jams the other signals. The far part

of the problem occurs when the signal transmitted is too weak to detect when it

arrives at the receiver. This occurs in other communication system, it even occurs in

a lesser extent with GPS. In GPS the signals are transmitted from similar distances,

thus signal power is relatively similar to the signals received. To deal with this issue

the Locatalites have been designed to use time division multiple access (TDMA).

This sets the duty cycle for when each pseudolite can transmit and avoids jamming

other pseudolites.

Another source of error comes from surveying the Locata tower positions. The

Locata tower position accuracy is only as good as the survey equipment used. Since

the pseudolite system is laid out on the ground, each position is required to be

surveyed by the user.

The last source of error, presented in this research, is multipath fading errors.

The multipath errors lead to occasional cycle slips in the system. Detection and

removal of cycle slips can be di�cult at times, depending on the size of the cycle

slip and SNR. Cycle slips can occur as small as half a wavelength (6cm), thus they

can be di�cult to detect. Multipath errors can also be in the form of slow growing

errors that ramp up and ramp down over a series of samples.
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2.5 Kalman Filter

The Kalman �lter is an estimator that is commonly used in navigation �lters

that contain inertial sensors. This is due to the ability of the Kalman �lter to estimate

the errors in the inertial measurements. This section includes a brief derivation

of the Kalman �lter algorithm [20] and leads to the extended Kalman �lter [19].

In previous work the inertial sensor has been aided by barometer updates, GPS

measurements, LIDAR systems and many other position sensors [26] [12] [20] [9].

The Kalman �lter performs well with the fast measurement rate of the inertial data

in the mechanization portion of the �lter algorithm. Also this type of �lter is ideal

when updating the inertial-based navigation solution with a system like GPS.

2.5.1 Noise in the Kalman Filter. There are two applications of noise that

occur in the Kalman �lter algorithms|process noise (w(ti)) and measurement noise

(v(ti)). Both types are based on zero mean white noise that can be described through

a Gaussian probability density function (PDF). Discrete process noise (wd(ti)) is

described in the Kalman �lter algorithm by the covariance matrix, Qd(ti)

E[wd(ti)] = 0 (2.21a)

E[wd(ti)w
T
d (tj)] =

8<: Qd(ti) ti = tj

0 ti 6= tj
(2.21b)

Process noise and measurement noise are assumed to be independent of each other.

Measurement noise is also Gaussian white noise and can be described by the following

parameters

E[v(ti)] = 0 (2.22a)

E[v(ti)v
T (tj)] =

8<: R(ti) ti = tj

0 ti 6= tj
(2.22b)

where R(ti) is the process noise covariance matrix.
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2.5.2 Kalman Filter Algorithm. The Kalman �lter is an optimal unbiased

estimator [20] [9]. A Kalman �lter optimally propagates and updates the state

estimates using all knowledge available. Knowledge comes from the covariance of

the estimates, process noise, and update noise. Unbiased refers to the idea that the

errors associated with the measurements and estimates will be zero mean over time.

A Kalman �lter consists of two distinct steps|a propagation step and an up-

date step. The �rst step involves propagating the estimates using the state model.

The state estimates (x(t)) are propagated forward in time using the following di�er-

ential equation

_x(t) = F (t)x(t) +B(t)u(t) +G(t)w(t) (2.23)

where

F (t) = process matrix

B(t) = input matrix

G(t) = noise matrix

u(t) = input at time t

w(t) = process noise

The following is a whole state example, used to explain how a Kalman �lter

is initialized using an initial estimate, x0, and an initial uncertainty, P0. The initial

state estimates are described in Equation (2.24). In this example the states shown

are based on the known starting location (Pos0), initial velocity (V el0), and the

initial attitude (	0).

x0 =

26664
Pos0

V el0

	0

37775 (2.24)
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The initial covariance of the state estimates is based on how well the states are known

and the process noise. This is even more important when correcting the inertial data

and estimating the accelerometer and gyro biases.

P0 =

26664
�2p 0 0

0 �2v 0

0 0 �2	

37775 (2.25)

where �2p, �
2
v,and �

2
	 are the initial variances that describe the knowledge of the initial

position, velocity, and attitude estimates. To implement the model, a di�erence

equation is required for a discrete system. The �rst step is to compute the transition

matrix, �i, given the process matrix, F (ti), over a small interval (4t) using

�i = eF (ti)4t (2.26)

The input matrix, B(�) and input u(�), are also computed for each epoch using the

integral

Bdud =

Z ti

ti�1

�(ti; �)B(�)u(�)d� (2.27)

Once the di�erence equation is calculated, the iteration process of the Kalman �lter

can begin. Figure 2.7 shows how the �lter is initialized with an initial estimate

and covariance. The equations in Figure 2.7 use a subscript k which refers to the

sample at time ti. The �lter propagates the estimate and covariance forward in

time until a measurement becomes available. Also shown is how the measurement is

incorporated in to the state estimates through the Kalman gain. The Kalman gain

provides a weighting factor that is calculated using the current estimate's uncertainty

combined with the uncertainty of the update measurement (Equation (2.32)).
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Figure 2.7: The Kalman Filter Algorithm shown as a Looping Process, with the
Initial Conditions and Filter Outputs.

In the propagated estimate (Equation (2.28)) there is no term for the process

noise included. This is because the expected value of white noise is zero.

x̂(t�i ) = �ix̂(t
+
i�1) +Bdud (2.28)

The process noise does however increase the uncertainty in the estimate. Thus

the discrete noise (Qd) is contained in the covariance update Equation (2.29). The

discrete noise is calculated using the Van Loan technique [9]. The covariance is

propagated forward using a combination of the transition matrix and the process

noise. The process noise can drive the uncertainty in the estimate to grow rapidly

or slowly depending on the dynamics being modeled in the system. For an inertial

sensor gyro drift rate, the estimated process noise in a MEMs device will cause the

covariance of the estimate to grow rapidly.

P (t�i ) = �iP (t
+
i�1)�

T
i +Gd(ti�1)Qd(ti�1)G

T
d (ti�1) (2.29)

Once the estimate and the covariance have been propagated forward in time,

the second step of the Kalman �lter updates the state estimates using available mea-
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surements. However the update step is only done when measurements are available.

The Kalman �lter algorithm is written as such that the state estimate and covariance

will propagate over time until a measurement becomes available.

The �rst process in the update step is to calculate the error between the es-

timate and the measurement (zi). The estimates (x̂(t
�
i )) are transformed into the

measurement space using the sensitivity matrix H(ti). This error is referred to as

the residual:

r(ti) = zi �H(ti)x̂(t
�
i ) (2.30)

When applying the measurement update, a weighting factor is calculated. In

the Kalman �lter, the weighting factor is referred to as the Kalman gain (K(ti)).

The Kalman gain is calculated based on the covariance of the measurements and the

covariance of the estimates. The covariance of the measurement residuals, Equation

(2.31), is calculated as part of the Kalman �lter.

A(ti) = H(ti)P (t
�
i )H

T (ti) +R(ti) (2.31)

The residual covariance is then used to solve for the Kalman gain:

K(ti) = P (t�i )H
T (ti)[H(ti)P (t

�
i )H

T (ti) +R(ti)]
�1 (2.32)

The Kalman gain is then used to weight the measurement residual. This can be seen

in the state estimate update

x̂(t+i ) = x̂(t�i ) +K(ti)[zi �H(ti)x̂(t
�
i )] (2.33)

Also the Kalman gain is used to weight the update of the covariance matrix

P (t+i ) = P (t�i )�K(ti)H(ti)P (t
�
i ) (2.34)
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There are many di�erent versions of the Kalman �lter. The one implemented

in this work will be the extended Kalman �lter. The extended Kalman �lter is based

on linearizing the regular Kalman �lter using the Taylor series expansion.

2.6 Extended Kalman Filter

The extended Kalman �lter is chosen when a system with nonlinearities is

included in a navigation �lter and the linear Kalman �lter can no longer be imple-

mented. The extended Kalman �lter is commonly used in GPS systems since GPS

measurements are nonlinear. When the extended Kalman �lter is used the GPS

measurements can be updated into the �lter in a linear manner. In the case of GPS,

the line-of-site equations are linearized using the �rst order Taylor series method.

The extended Kalman �lter is an extension of the linearized Kalman �lter. The

di�erence between the linearized and extended Kalman �lters is the source of the

nominal conditions the algorithm equations are linearized about. For the linearized

Kalman �lter, the nominal conditions are predetermined by a nominal trajectory

that is known prior to implementing the �lter. The EKF is based on using the �lter

estimates as the nominal conditions thus it is dependent on accurately estimating

the trajectory.

One would use the linearized �lter for a system with a known trajectory that

can be precalculated, such as a satellite orbit. On the other hand the linearized

Kalman �lter will not do so well when it comes to a trajectory that has unmodeled

errors and disturbances, such as a plane in ight with wind. The extended Kalman

�lter would suit this situation better; however, the extended Kalman �lter uses the

best known position estimate as its linearization condition, thus if this position is

not accurate or invalid the �lter can diverge. Thus the EKF can be susceptible to

measurement observability.
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2.6.1 Extended Kalman Filter Equations. This section will present the

algorithm for implementing an extended Kalman �lter (EKF) [19]. The �rst step is

to derive the propagation equations that will be used in the EKF. The Taylor series

expansion is used to linearize the dynamic model and the measurement model.

The process noise in the di�erence model is expressed asQk. This is found using

the Van Loan technique [9]. The Van Loan technique calculates the discrete process

noise from the linearized state matrix, F [x̂(t=ti); t], the noise intensity matrix, G,

and the continuous process noise covariance, Q. There is no single, precomputed Qk

since this value is also calculated every propagation step along with the transition

matrix.

To solve for the propagated state estimate the non-linear di�erential Equation

(2.35) will be evaluated from the time interval of ti�1 to ti (ti=ti�1)

�
x̂(ti=ti�1) = f [x̂(ti=ti�1); u(t); t] (2.35)

where f [x̂(ti=ti�1); u(t); t] is the nonlinear process matrix at time t.

In each propagation step the state dynamic equation is linearized using the

nominal conditions. The nominal conditions in an extended Kalman �lter are the

current state estimates. The �rst step in linearizing the process matrix is to subtract

the nominal state from the true state:

[ _x(t)� _xn(t)] = f [x(t); u(t); t]� f [x̂(t); u(t); t] +G(t)w(t) (2.36)

where

f [�] = the nonlinear process matrix

x(t) = true state at time t

x̂(t) = estimated state at time t
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The �rst order Taylor series, Equation (2.36), is linearized about x̂(t) and u(t),

resulting in F (x̂(t); t), Equation (2.37).

f [x(t); u(t); t]� f [x̂(t); u(t); t] � @f [x(t); u(t); t]

@x

����
x=x̂(t);u=�u(t)

[x(t)� x̂(t)] (2.37)

where @f [x(t);u(t);t]
@x

is the partial derivative of the process matrix with respect to the

states (x) at time t.

The perturbation state is de�ned by [x(t) � xn(t)] = �x(t). The resulting

perturbation equation of the states is

�
�x(t) =

@f [x(t); u(t); t]

@x

����
x=x̂(t);u=�u(t)

�x+G(t)w(t) (2.38)

The propagation equation can be calculated directly in MATLAB using an

ODE solver. Using a numerical integrator to �nd x̂(t�i ) provides a simpler means

of implementing the EKF algorithm. The covariance can then be calculated using a

numerical integrator solving the di�erential Equation (2.39).

_P (ti=ti�1) = F [x̂(ti=ti�1); t]P (ti=ti�1)+P (ti=ti�1)F
T [x̂(ti=ti�1); t]+G(ti)Q(ti)G

T (ti)

(2.39)

The nonlinear measurement estimate (ẑ(ti)), shown in Equation (2.40), is also lin-

earized using the Taylor series approach.

ẑ(ti) = h[x̂(t); t] + v(t) (2.40)

where v(t) is the measurement noise.

The nonlinear measurement matrix, h [x(t); t], is expanded in Equation (2.41).

[z(t)� ẑ(t)] = h [x(t); t]� h [x̂(t); t] + v(t) (2.41)
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where

z(t) = true measurement

zn(t) = estimated measurement

h [x̂(t); t] = nonlinear measurement matrix based on the estimated state

h [x(t); t] = nonlinear measurement matrix based on the true state

Then taking the partial derivatives in terms of the states and evaluating about the

nominal conditions, x̂(t), results in

h [x(t); t]� h [x̂(t); t] � @h [x̂(t); t]

@x

����
x=x̂(t)

�x(t) (2.42)

where @h[x̂(t);t]
@x

is the partial derivative of the measurement matrix with respect to x

at time t.

The resulting measurement equation in terms of the perturbations, �x(t), is

shown in Equation (2.43).

�z(t) =
@h [x̂(t); t]

@x

����
x=x̂(t)

�x(t) + v(t) (2.43)

The remainder of this section presents the algorithm used to implement the

extended Kalman �lter [19]. The nominal condition is based on the propagated

estimate from Equation (2.35). When there are no measurements available to incor-

porate into the �lter estimates, then the state estimates are passed on in the update

step as

x̂(t+i ) = x̂(t�i ) (2.44)

and the covariance

P (t+i ) = P (t�i ) (2.45)
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When the measurements are available Equations (2.46) to (2.51) are used to

update the state estimates and covariance with the current measurements. The �rst

step in the update process is to calculate the Kalman gain, K(ti),

K(ti) = P (t�i+1)H
T [x̂(t�i ); ti]

�
H[x̂(t�i ); ti]P (t

�
i )H

T [x̂(t�i ); ti] +R(ti)
��1

(2.46)

where

H[x̂(t�i ); ti] =
@h [x̂(t); t]

@x

����
x=x̂(t�i )

The extended Kalman �lter is developed on the idea of incorporating pertur-

bations into the previous state estimates. In an attempt to develop an equation to

calculate the whole state a few steps are needed. The �rst step is to calculate the

error state propagation equation, also referred to as the perturbation equation. To

calculate this equation a �rst order Taylor series is used.

When updating the extended Kalman �lter, the error state estimates are cal-

culated using the Kalman gain and incorporating the new measurement

c�x �t+i � =c�x �t�i �+K(ti)
h
(zi � ẑ(ti=ti�1))�H(x̂(t�i ); ti)

c�x �t�i �i (2.47)

where c�x is the estimated error state.
The error of the state estimate is zero after it has been incorporated in the

update step. This then means the error after propagating is also zero

c�x �t�i � = 0 (2.48)

Therefore the resulting measurement update for the error state becomes

c�x �t+i � = K(ti) [(zi � ẑ(ti=ti�1))] (2.49)
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Equation (2.49) is exactly the residual of the whole state estimate|therefore the

whole state estimate can be expressed as Equation (2.50). This is true since the

whole state is the propagated estimate plus the correction term in Equation (2.49).

x̂(t+i ) = x̂(t�i ) +K(ti)
�
zi � h[x̂(t�i ); ti]

�
(2.50)

The residual is calculated from the nonlinear function h[x̂(t�i ); ti]. The resulting

h[x̂(t�i ); ti] is then subtracted from the current measurement, zi.

The covariance update is based on the same equation used in the standard

Kalman �lter.

P (t+i ) = P (t�i )�K(ti)H[x̂(t
�
i ); t]P (t

�
i ) (2.51)

This section explained how the extended Kalman �lter algorithm is implemented

using nonlinear process and measurement models. The next section will discuss how

failure detection can be implemented in the extended Kalman �lter algorithm.

2.7 Failure Detection

The idea of failure detection is to �nd and remove measurements that contain

errors. Cycle slips are errors that commonly occur in GPS and pseudolite-based

systems. Having the ability to reject errors increases the reliability of a system.

Failure detection can be done many di�erent ways. A basic approach to failure

detection is to use a residual monitoring technique [20]. It is common practice to

use the residual in a Kalman �lter to detect and reject bad measurements. The

residual and residual covariance are calculated at each update in the Kalman �lter

algorithm. Using the residual (Equation (2.30)) for detecting failures is possible since

the residual is a zero mean Gaussian distributed variable with a speci�ed variance

(Equation (2.31)). A failure is declared when the threshold, in terms of standard

deviations, is exceeded. Thus, when a residual is some speci�ed number of standard

deviations away from the expected value then a failure is declared. This type of
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algorithm performs well when dealing with cycle slips and slow growing errors that

are large enough to cause the residual to exceed the threshold. This implementation

was used in [25], where the residual (rki) is divided by the residual standard deviation

(�rki ) the resulting ratio is the same test statistic mentioned above. The number of

sigma the residual is from the standard deviation (tki) is calculated as

tki =
rki
�rki

(2.52)

Another failure detection method discussed in [20] used statistical hypothesis

testing for the likelihood function. This method uses a moving window that incor-

porates the statistics of the past N residuals and residual variances. It then uses

the sequence to determine if a failure occurred inside the window. The size of the

window is normally between 5 and 20 samples. This function is describe by

LNk(ti) = ck(ti)�
1

2

iX
j=i�N+1

r2k(tj)

�2k(tj)
(2.53)

where ck(ti) does not contain information about the likelihood of a failure [20].

This type of likelihood function is good at detecting failures that occur ran-

domly over time but that may not violate the residual threshold technique previously

discussed. However this technique results in a delay in detecting a bad measurement.

The length of the delay will depend on the size of the error, the threshold, and the

noise of the previous measurements.

A third failure detection technique is to use a multiple �lter approach. In this

case a failure detection algorithm using the residual monitoring technique can trigger

a second �lter to be spawned, hypothesizing the existence of a cycle slip. Both �lters

would then exist until one or the other was determined valid by hypotheses testing.

This technique can become cumbersome with processing and implementation

if there are many failures in a short time period. For N failures there will be 2N
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�lters. To reduce the level of computation then the size of N would be restricted.

When implementing a restriction of the number of �lters then it is possible more

failures would be declared. This would work by resetting the ambiguity and trim-

ming the non-failure �lter. This would then make room for a new failure to be

declared. Declaring a false alarm on one measurement will change the con�dence in

that measurement over a short period of time. This is less likely to impact the �lter

then incorporating a measurement with the wrong ambiguity.

2.8 Summary

This section presented many topics in navigation that are used when imple-

menting an inertial and pseudolite-based navigation system. The topics discussed

consisted of inertial, measurement mechanization, the global positioning system,

pseudolite technology, Kalman �ltering, and failure detection. The extended Kalman

�lter was presented for use with a nonlinear navigation system, such as the pseudo-

lite system. The integration of the pseudolite and inertial system will be shown in

the next chapter. This will include how the failure detection is implemented in the

extended Kalman �lter algorithm.
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III. Design of the Pseudolite and Inertial Navigation Filter

This chapter focuses on the pseudolite and INS integration, along with incorporating

failure detection. The integration was done through the use of an extended Kalman

�lter. The development of the �lter includes the dynamic system model, the mea-

surement model, and the oating point carrier phase ambiguity estimation used in

this work. The dynamic model section will discuss the inertial error model and the

noise sources. The following section discusses the nonlinear measurement model.

The measurement model is created using the pseudoranges and single di�erenced

carrier phase measurements from the pseudolite system. The failure detection algo-

rithm implementation will then be explained. The failure detection algorithm was

implemented with the navigation �lter to reduce errors and increase reliability the

phase measurements. The navigation �lter, with failure detection, was tested using

real data. This includes conducting a �eld experiment and developing simulation

data from the �eld work.

3.1 Navigation Filter

The navigation �lter implemented in this research was derived from the ex-

tend Kalman �lter algorithm presented in Chapter 2. This �lter uses an error state

approach to make corrections to the inertial mechanization solution. Also the nav-

igation solution is fed back to the INS mechanization algorithm to keep the errors

small in the navigation �lter. The inertial sensor was tightly integrated with the

pseudolite measurements. The pseudolite measurements are capable of up to a ten

Hertz update rate, depending on the output choice. The pseudolite system can op-

erate at 10Hz in binary output mode or a max rate of 2Hz in ASCII output mode.

Most of the work presented here used the 2Hz data rate. Two Hertz was used since

the growth of errors in the inertial mechanization is relatively small over this period.
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3.1.1 Dynamic System Model. The dynamics in the navigation system are

comprised of an error model of the inertial system, a clock model for the pseudor-

anges, and process noise for the ambiguity estimates. A local level error model was

used when implementing the inertial system dynamics. The dynamics used are based

on the ones developed and described in [33].

The error states in the navigation system due to the inertial error model are

shown in detail to their corresponding variable

x1 = �PN Position error in the North direction (meters)

x2 = �PE Position error in the East direction (meters)

x3 = �PD Position error in the Down direction (meters)

x4 = �vN Velocity error in the North axis (meters/second)

x5 = �vE Velocity error in the East axis (meters/second)

x6 = �vD Velocity error in the Down axis (meters/second)

x7 = � N Angle error about the North axis (radians)

x8 = � E Angle error about the East axis (radians)

x9 = � D Angle error about the Down axis (radians)

x10 = abiasx Bias in the x-axis accelerometer (meters/second2)

x11 = abiasy Bias in the y-axis accelerometer (meters/second2)

x12 = abiasz Bias in the z-axis accelerometer (meters/second2)

x13 = !biasx Bias in the x-axis gyroscope (radians/second)

x14 = !biasy Bias in the y-axis gyroscope (radians/second)

x15 = !biasz Bias in the z-axis gyroscope (radians/second)

The inertial error model used in this research was developed by [33], where the INS

error model is derived in detail. This inertial error model provides a linear dynamic
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matrix as shown in Equation (3.1).

Fins =

26666666664

03x3 I3x3 03x3 03x3 03x3

CneGC
e
n �2Cne 
eieCen fn� Cnb 03x3

03x3 03x3 �(Cne !eie)� 03x3 �Cnb
03x3 03x3 03x3 � 1

Ta
I3x3 03x3

03x3 03x3 03x3 03x3 � 1
T!
I3x3

37777777775
(3.1)

where

Cne = Earth to navigation frame rotation matrix

Cen = navigation to Earth frame rotation matrix

fn = force in the navigation frame

G = noise intensity matrix


eie = Earth rate

Ta = time constant for accelerometer bias

T! = time constant for gyroscope bias

Cnb = body to navigation frame rotation matrix

The bias estimation model for the accelerometers and gyroscopes is driven by white

noise. This model was shown in Equation (2.5) where the accelerometer bias noise

is noted as wabiasand the gyroscope bias noise as w
!
bias. There is also inertial sen-

sor measurement noise wfins and w
!
ins, shown in Equation (2.3) and Equation (2.4).

Therefore there are 12 white noise sources associated with the inertial model. This
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leads to the inertial noise intensity matrix Gins.

Gins =

26666666664

03x3 03x3 03x3 03x3

Cnb 03x3 03x3 03x3

03x3 �Cnb 03x3 03x3

03x3 03x3 I3x3 03x3

03x3 03x3 03x3 I3x3

37777777775
(3.2)

3.1.2 Pseudolite Inertial Integration. The navigation �lter was designed

around an inertial navigation system that was tightly integrated with raw pseudo-

lite measurements. The navigation �lter process model, in its entirety, is shown in

Figure 3.1. Tight integration was used for several reasons. First, tight integration

gives insight into the raw phase measurements, aiding in the ability to implement

failure detection. If the system was integrated using loose coupling, failure detection

would not be as e�cient. Since the failure detection is done in conjunction with

positioning, bad measurements can be detected and removed before being incorpo-

rated in a position solution. Also it keeps from having to design a separate Kalman

�lter for the pseudolite measurements. Ultra-tight integration was not an option for

this work. Ultra-tight integration could help in the detection and removal of mul-

tipath errors. For this work only the pseudolite raw measurements were available.

Since the inertial system is tightly integrated with the pseudolite measurements the

measurement model is based on

�ẑ(t) = zpl(t)� ẑ(t) (3.3)

where zpl(t) is the pseudolite measurement and ẑ(t) is the estimated pseudolite mea-

surement.

Integration of the pseudolite system will also require augmentation to the states

described earlier. The carrier phase measurements contain oating point ambiguities
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Figure 3.1: The Navigation Filter Model, showing the Pseudolite Measurements
Tightly Integrated with the INS.

that will be estimated as part of the navigation �lter algorithm. The number of am-

biguities depends on the number of available measurements at each epoch during the

navigation period. For this research a maximum of 20 carrier phase measurements

were available. This results in 19 single di�erence measurements using one signal

as the reference for all observations. A number 1 through 20 is used to identify the

pseudorandom noise (PRN) frequency of each pseudolite in the system. For example,

if PRN 1 is the reference then the single di�erenced ambiguity for PRN k will be

4N1;k where k is any number from 2 to 20.

In addition to the ambiguity states there will also be another two states used

to estimate the clock bias and drift in the pseudorange measurements. The clock

model [9] Equation (3.4) is comprised of two states, a bias xclk1 and a drift xclk2.

Each state is driven by zero mean white Gaussian noise, wclk1 and wclk2 . The bias,

xclk1 , is used to estimate the pseudorange error due to the receiver clock bias in the

pseudolite measurements. This is a similar model to the one used when estimating
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the receiver clock bias in GPS pseudoranges.24 _xclk1

_xclk2

35 =
24 0 1

0 0

3524 xclk1

xclk2

35+
24 wclk1
wclk2

35 (3.4)

The pseudolite system requires up to an additional 21 states in the navigation

�lter. They include the 2 states for the clock model and 19 states to estimate the

single di�erenced ambiguities. The inertial sensor requires the 15 states described

above. The navigation �lter then consists of 36 states total. The augmented state

vector for the navigation �lter is shown in Equation (3.5). The variables �P n, �vn,

 n, anbias and, !
n
bias are all 3x1 vectors.

�x =

26666666666666666666666664

�P n

�vn

� n

anbias

!nbias

xclk1

xclk2

4N1;2

...

4N1;k

37777777777777777777777775

(3.5)

The process matrix F is also augmented to include the dynamics of the pseu-

dolite measurements. The pseudolite receiver clock states and the oating point

ambiguity states do not impact the dynamics of the inertial model directly, since

the systems are independent. The clock dynamic matrix (Fclk) is shown in Equation

3-6



(3.4). The ambiguity dynamic matrix (FN) is nxn and equal to zero, FN = 0nxn.

F =

26664
Fins 015x2 015xn

02x15 Fclk 02xn

0nx15 0nx2 FN

37775 (3.6)

The noise intensity matrix (G) is augmented to apply a small amount of pro-

cess noise to the ambiguity states. This step is done to keep the oating point

solution from converging to a constant. Additive white noise is applied to each sin-

gle di�erenced ambiguity. The white noise is independent for each single di�erence

observation, w1;kN

E[w1;kN (t)] = 0

E[w1;kN (t)w
1;k
N (t+ �)] = 1x10�4

The inertial noise intensity matrix (Gins) was de�ned in Equation (3.2), while Gclk

and GN are identity matrices corresponding to the noise sources included in the clock

model (Gclk = I2x2) and ambiguity states (GN = Inxn).

G =

26664
Gins 015x2 015xn

02x12 Gclk 02xn

0nx12 0nx2 GN

37775 (3.7)

3.1.3 Measurement Model. The measurement model was derived using

pseudoranges and single di�erence carrier phase measurements. The pseudolite mea-

surement model is nonlinear but is linearized using a �rst order Taylor series, as part

of the extended Kalman �lter algorithm.

ẑ(t) = H[x̂(t�i ); ti] (3.8)
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The measurement model is linearized at each epoch using a �rst order Taylor series

approximation. The error due to the troposphere was removed from the pseudor-

ange and carrier phase measurements using a model based on the trajectory and

atmospheric conditions [30]. The pseudorange and phase measurements are esti-

mated using Equations (3.9) and (3.10). The pseudorange estimate (�̂n) is based on

the location (xn; yn; and zn) of the tower n and the current receiver position. The

current receiver position is calculated using the best estimate from the propagation

algorithm (x̂u, ŷu, and ẑu). The clock error, c�t, is estimated inside the navigation

�lter using the clock model described above, Equation 3.4.

�̂n =

q
(xn � x̂u)

2 + (yn � ŷu)
2 + (zn � ẑu)

2 + cc�t (3.9)

The carrier phase estimate (�̂n) is modeled using the same range calculation as

the pseudorange estimate but in this case the clock is not removed by the clock model.

Also the ambiguity, Nn, would also need to be estimated in terms of cycles. Each

carrier phase measurement may not have the same wavelength, since two di�erent

carrier frequencies are in use in this pseudolite system. Thus the wavelengths, �n,

correspond to the nth carrier phase measurement.

�̂n =
1

�n

q
(xn � x̂u)

2 + (yn � ŷu)
2 + (zn � ẑu)

2 + N̂n + cc�t (3.10)

The next step will include forming the single di�erence phase estimates based on

Equation (3.10). For the derivation of the measurement model, PRN 1 was used as

the master for all single di�erence measurements. The notation 1; n refers to PRN

1 minus PRN n.

The phase measurements used in this work are converted to meters. This is

done by multiplying each real phase measurement by its corresponding wavelength

(�n). Thus the single di�erence phase estimate is also estimated in meters. The

resulting single di�erence phase estimate (���̂
1;n
) consists of the di�erenced ranges
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between PRN 1 and n and the ambiguity (�N1;n) estimated by the �lter:

���̂
1;n

=

q
(x1 � x̂u)

2 + (y1 � ŷu)
2 + (z1 � ẑu)

2 � (3.11)q
(xn � x̂u)

2 + (yn � ŷu)
2 + (zn � ẑu)

2 +�N̂1;n

Since the phase measurements are multiplied by their corresponding wave-

length, the single di�erence ambiguity (�N1;n) will also be in meters. Converting the

phase measurements to meters is done since there is only one master phase measure-

ment used as the reference for all the signals. The measurement matrix (h[x̂(t�i ); ti])

is formulated using the pseudorange and single di�erence phase estimates, resulting

in the following model

h[x̂(t�i ); ti] =

26666666666664

q
(x1 � x̂u)

2 + (y1 � ŷu)
2 + (z1 � ẑu)

2 + cc�t
...q

(xn � x̂u)
2 + (yn � ŷu)

2 + (zn � ẑu)
2 + cc�t

�r̂1;2 +�N̂1;2

...

�r̂1;n +�N̂1;n

37777777777775
(3.12)

where the range notation is de�ned as

�r̂1;n = r̂1 � r̂n (3.13)

r̂1 =

q
(x1 � x̂u)

2 + (y1 � ŷu)
2 + (z1 � ẑu)

2 (3.14)

r̂n =

q
(xn � x̂u)

2 + (yn � ŷu)
2 + (zn � ẑu)

2 (3.15)

The sensitivity matrix, h[x̂(t�i ); ti], is then linearized by taking the partial derivatives

in terms of each state and then evaluating the result using the current �lter estimates.
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The resulting linearized matrix, H(t), is shown in Equation (3.16).

@h[x̂(t�i ); ti]

@x

����
x=xn

=

26666666666666664

(x1�xu)
r̂1

(y1�yu)
r̂1

(z1�zu)
r̂1

0 � � � 0 �1 0 0 0 � � � 0
...

...
...

...
. . .

...
... 0

...
...
. . .

...

(xn�xu)
r̂n

(yn�yu)
r̂n

(zn�zu)
r̂n

0 � � � 0 �1 0 0 0 � � � 0

A1;2x A1;2y A1;2z 0 � � � 0 0 0 1 0 � � � 0

A1;3x A1;3y A1;3z 0 � � � 0 0 0 0 1 � � � 0
...

...
...

...
. . .

...
... 0

...
...
. . .

...

A1;nx A1;ny A1;nz 0 � � � 0 0 0 0 0 � � � 1

37777777777777775
(3.16)

where r̂n is the estimated range de�ned in Equation (3.15). The linearized single

di�erence measurement notation, that corresponds with Equation (3.16), is as follows

A1;nx =
(x1 � xu)

r̂1
� (xn � xu)

r̂n
(3.17)

A1;ny =
(y1 � yu)

r̂1
� (yn � yu)

r̂n
(3.18)

A1;nz =
(z1 � zu)

r̂1
� (zn � zu)

r̂n
(3.19)

The resulting measurement matrix is in terms of the error states that make up the

navigation �lter.

3.1.4 Floating Point Ambiguity Estimation. The ambiguities in the pseu-

dolite phase measurements are not integers, such as the case in GPS phase measure-

ments. In the case of pseudolite phase measurements the ambiguities are estimated

using a oating point solution. The procedure for estimating the ambiguities begins

with an initial estimate. This estimate relies on using the pseudorange. The single

di�erence pseudorange measurements are subtracted from the single di�erence phase

measurements.

4N̂1;n
0 = �1�1 � �n�n �4�1;n (3.20)
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where 4�1;n is the single di�erence pseudorange measurements.

The resulting value is the initial estimate of the ambiguity (4N̂1;n
0 ). However,

there is still multipath and noise errors included in this estimate. Since the pseudo-

range is used then the uncertainty of the ambiguity is set exactly to the covariance

of the pseudorange (�2�). The initial covariance matrix of the ambiguities is

PN0 =

26666666664

�2� 0 � � � 0 0

0 �2� � � � 0 0
...

...
. . .

...
...

0 0 � � � �2� 0

0 0 � � � 0 �2�

37777777775
(3.21)

The Kalman �lter will then be used to correct the ambiguity at each measurement

update. Over time the ambiguity estimates will converge to an accurate set of ambi-

guities that agree with the set of measurements at each iteration. When a cycle slip

is detected, the ambiguity that contains the error is re-initialized using the pseudo-

range measurements using Equation (3.20). The intention here is to keep the �lter

from diverging. If the ambiguity was reset with a bad estimate, then the �lter could

diverge. To avoid this, the ambiguities are always reset using the pseudorange. The

covariance is also reset when an ambiguity is re-initialized. To reset the covariance

only the row and column of the ambiguity in question are changed. Shown below,

in Equation (3.22), is how the covariance for the second ambiguity estimate is reset.

PNR =

26666666664

0

0 �2� � � � 0 0
...

0

0

37777777775
(3.22)
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The noise error variance in the pseudorange measurements (�2�) is 2.5 meters.

The noise error variance in the carrier phase measurements (�2�) is 1cm.

3.2 Failure Detection Algorithm

In this research there were two di�erent implementations of a failure detection

algorithm. The �rst one is based on residual monitoring [20]. The other is based

observing the residuals over time in a moving window [20].

3.2.1 Residual Threshold Method. A failure detection algorithm was de-

signed using the idea of residual monitoring inside the Kalman �lter. This algorithm

compares the residual of each individual measurement with its corresponding stan-

dard deviation to detect a failure. The failure detection is accomplished after the

system is propagated and right before the measurement is incorporated (see Figure

3.2). The navigation ow chart, shown in Figure 3.2, also describes how the �lter

is implemented step by step. This is important since the failure detection will then

identify and remove the measurements that contain errors keeping them from cor-

rupting the navigation solution at the update step.The idea of using the residual to

detect a failure was decided upon after researching other methods such as Equation

(2.53) [20], Equation (2.52) [26], and SNR-based [1] approaches. The SNR-based

approach refers to the use of the SNR measurement to determine when a cycle slip

occurs [1] [30]. A threshold was set so that when it was exceeded the cycle slip was

declared. The only problem with the SNR method is that, when the SNR is high

there is no guarantee a cycle slip does not occur in the phase measurements.

The residual monitoring approach was chosen for the ability to incorporate this

algorithm in the navigation �lter using information that was readily available. Also

since the cycle slips that are to be detected occur fairly quickly, most often within one

sample, a single error detection can be su�cient to removing the majority of errors.

If a false alarm is detected with this method, then the ambiguity is re-initialized as
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Figure 3.2: The Kalman Filter Decision Process Model with Failure Detection.
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described above. The ambiguity states would then converge to accurate estimates

over a few iterations.

The threshold for detection was set to 3� as a starting point to analyze the

performance of the algorithm. The threshold was varied to observe the sensitivity

of detecting errors while also trying to avoid false alarms. The ability to detect

errors will depend on the quality of the inertial sensor. This can be seen in Equation

(2.31), where the residual covariance is dependent on the value of the estimated

process noise. Larger estimated process noise will result in larger residual standard

deviations. This will increase the threshold on the residual making small errors in

the phase measurement more di�cult to detect.

3.2.2 Moving Window Method. This method uses a moving window over

a set number of samples to calculate the likelihood of a failure. The algorithm used

10 samples, in this research, due to the type of errors being modeled. The errors

in the phase measurements either happen instantaneously or over a slow growing

rate. There are a few steps and conditions required to properly implement Equation

(2.53). The moving window assumes the �rstN samples are error free. If the initialN

samples are not error free the algorithm will reject the measurement and re-initialize

the window. The window is always re-initialized after any failure detection. The

moving window method requires N -1 samples from the current epoch to be stored

and used in the next epoch. To declare a failure using the moving window a threshold

is required. One note about setting the threshold is the likelihood values of this

method becomes more negative as the failures grow larger and more often.

3.3 Field Experiment

A road test was conducted on an inactive runway at area B of Wright-Patterson

AFB. The �eld test consisted of setting up a Locata pseudolite network and conduct-

ing a data collection with a navigation reference system. The equipment and support
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for this experiment was provided by the Advanced Navigation Technology (ANT)

Center at the Air Force Institute of Technology (AFIT). The navigation reference

system consisted of a pseudolite receiver, two GPS receivers, and two inertial sensors.

The GPS receivers were NovAtel OEM IVs. For the inertial sensors a Microbotics

MIDG MEMs sensor was used, while the other was the Honeywell HG1700 IMU,

integrated with the NovAtel Black Diamond System (BDS). The navigation sensors

were installed on the ANT Center's golf cart (also referred to as the RAVEN). The

entire con�guration is shown in Figure 3.3.

A pseudolite tower consisted of a survey antenna, a pseudolite receive antenna,

and two pseudolite transmit antennas, as shown in Figure 3.4. The survey antenna

was installed to be in-line with the phase centers of the pseudolite antennas. The

pseudolites used patch antennas as the transmitters and receivers.

Surveying the pseudolite network consisted of recording stationary GPS data

over a 15 minute period. The GPS data of each tower was then combined with local

reference stations to resolve a position estimate with an expected accuracy of better

than 1cm. There are some other errors that need to be considered in the Locata

tower position accuracy. Wind can move the tower approximately 1 � 2cm in any

direction, and also the towers can settle in the ground over time attributing another

5 to 10cm of error. The location of pseudolite tower positions and the origin of the

receiver are shown in Table 3.1.

The pseudolite tower positions 1 through 6 are depicted in Figure 3.5 relative

to the runway, outlined in the �gure, which was used during the experiment. Also

the origin of the vehicle trajectory is highlighted and marked with O. The geometry

of the system was ideal in the horizontal axes. Unfortunately, there was not much

of a vertical di�erence between the six towers, thus the vertical geometry was not

adequate. The expected errors in horizontal position are around 10cm, while the

error in the vertical channel is expected to be on the order of 10 meters. Using
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Figure 3.3: Navigation Sensor Installation on the ANT Center RAVEN.

Figure 3.4: Pseudolite Tower Setup using Patch Antennas.
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Table 3.1: Pseudolite Tower Positions in the Local Navigation Frame (ENU)

Location xENU(meters) yENU(meters) zENU(meters)
Tower 1 -106.19 1083.22 -21.22
Tower 2 -197.79 89.40 -4.03
Tower 3 -144.45 -559.81 1.47
Tower 4 336.95 -1377.71 3.23
Tower 5 526.80 -488.08 2.11
Tower 6 380.86 159.27 -0.43

this site for test allowed the towers to have a clear line-of-site to each other and the

receiver for the majority of the trajectory.

3.4 Simulation Development

The use of simulations to test the failure detection algorithm was done so an ac-

curate depiction of performance statistics could be generated. The simulations were

developed using the test data from the �eld work. The inertial data used in the sim-

ulations was the same as the data used in the �eld experiments. Modi�cations were

done to the measurement update data, where perfect carrier phase measurements

were calculated based on the truth data. The truth data is calculated using NovAtel's

Waypoint Post-Processing Software [23]. The simulated carrier phase measurements

were based on adding di�erent types of errors to perfect phase measurements. The

errors can be separated into two di�erent classes|instantaneous cycle slips and slow

growing errors. On top of the cycle slips and the slow growing errors, white Gaussian

noise was added to all carrier phase and pseudorange measurements. The variance

of the phase noise was 1cm, while the pseudoranges have a variance of 2:5 meters.

This is in line with the actual measurement noise value used in the R matrix.

Instantaneous cycle slips occur occasionally in the pseudolite carrier phase

measurements. The magnitude of the cycle slips is in terms of wavelengths. The

Locata pseudolite system can have cycle slips as small as a partial wavelength. Also

a cycle slip occurs within one sample.
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Figure 3.5: Pseudolite Tower Positions Relative to the Runway used for the Field
Test.

Slow growing errors happen over a number of measurement samples. These

type of errors are characterized by the slope of the growth of the error. In this

research, slope will be de�ned as the number of wavelengths the error grows per

sample.

3.5 Summary

This section discussed the techniques used to detect and remove failures in a

pseudolite navigation system. The pseudolite navigation system is integrated with

the inertial sensor to provide a navigation estimate to compare individual carrier

phase measurements over time to detect failures such cycle slip and slow growing

errors. The local level inertial error model was implemented in the extended Kalman

�lter algorithm. The navigation �lter was developed using error states with the

extend Kalman �lter algorithm. Updates to the �lter were single di�erence pseudolite

carrier phase measurements. The next section will present the results of the �lter

described above using the �eld experiment and simulations.
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IV. Results of Navigation Filter

This chapter presents the results of two failure detection algorithms implemented in

a pseudolite and inertial base navigation �lter. The �rst section presents the errors

that were modeled in this research, using real pseudolite phase measurements. The

second section describes the details of the �eld test, such as the trajectory, pseudolite

locations, and the truth source. The simulations are based on the truth source of the

�eld test. The third section discusses the results of the residual monitoring failure

detection algorithm using simulated measurements that contain errors. The fourth

section presents the performance of the moving window failure detection algorithm

using simulations. The statistics used to characterize each scenario in the simulations

include the failure detection rate, false alarms, and the number of samples required

to detect an error. The navigation results from the �eld test using the pseudolite

measurements and inertial data are shown in the �fth section.

4.1 Single Di�erence Observables

The carrier phase measurements in a pseudolite system contain errors that are

modeled in two ways|instantaneous cycle slips and slowly growing errors. Instan-

taneous cycle slips occur in a similar fashion as the GPS case were the system loses

tracking lock and the ambiguity changes as a result. The slow growing errors, which

may or may not lead to cycle slips, occur over multiple samples. A slow growing

error that ramps up (increases in error) then ramps down (decreases in error) can

be seen in Figure 4.1. The single di�erenced error (SD Error) in Figure 4.1 was

calculated by di�erencing the carrier phase measurements from PRN 1 and PRN

11. The true range was removed using the true navigation solution obtained by

carrier-phase-based DGPS. A closer look, given in Figure 4.2 shows the slowly grow-

ing error that is being focused on in this research. This error grows over a series of

samples, �nally reaching an error of -1 meter. The error then ramps back down to
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Figure 4.1: The Single Di�erenced Error with the True Range Removed, shown
with the Corresponding SNR Measurement. The Measurement shown is from PRN

1 and 11.
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Figure 4.2: A Closer View of a Slow Growing Error in the Single Di�erenced
Carrier Phase Ambiguity. The Measurement shown is from PRN 1 and 11.

zero over another series of samples. Also shown in the �gure are the SNR values for

each PRN used to calculate the single di�erence measurement. The SNR does dip

before the time the error occurs but does not appear to be related to the actual slow

growing error. During the time of the error both signals have an SNR measurement

of approximately 30dB.

The pseudolite phase measurements also contain large cycle slips such as the

ones shown in Figure 4.3. Figure 4.3 shows the single di�erenced error between

PRNs 1 and 11. The cycle slips in the single di�erenced ambiguity occur several

times over the period of the �eld test. Figure 4.3 shows the SNR measurements are

relatively stable when the cycle slips occur. These cycle slips lead to the requirement

of a failure detection algorithm that is independent of SNR measurements.

4.1.1 Cycle Slip Detection (SNR-based). Past work used the signal-to-noise

ratio to determine cycle slips in the pseudolite phase measurements [1] [30]. One of

the assumptions made when using the SNR technique is that a cycle slip could still

occur when the SNR is above the set threshold. The research done here shows that

cycle slips can occur even when the SNR is relatively high. The SNR technique does
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Figure 4.3: A Single Di�erenced Ambiguity Containing Large Cycle Slips, shown
with SNR Measurements. The Single Di�erenced Measurement is based on PRN 1

and 7.
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not address cycle slips caused by other means when the SNR is normal, above the

set threshold, such as the case shown in Figure 4.2. The past work used 8dB as

the cuto� threshold for the cycle slip detection [30]|however, data collected for this

works shows that the power levels rarely drop below this threshold. It should also

be noted that the Locata receivers used for this research were updated between the

previous work [30] and this current research.

4.2 Field Test

4.2.1 Navigation Trajectory. The �eld test section is based on the trajec-

tory shown in Figure 4.4, which will be referred to as the area B runway test. The

location of the �eld experiment was an old runway located on area B at Wright-

Patterson AFB. A golf cart, containing the navigation sensors, was used as the test

vehicle (Section 3.4). The navigation path was relatively at, with less than 10 me-

ters of variation in the local vertical axis. The average velocity when moving was

approximately 4 m/s.

4.2.2 Geometry of the Pseudolite Network. The pseudolite reference system

was installed along the runway, shown in Figure 4.4 and described in Section 3.4.

Figures 4.5 and 4.6 shows the corresponding position and velocity of the trajectory

over time. The vehicle was at rest for a lengthy period at the start of the trajectory

and also came back to rest at the end of the period. One issue when using a ground-

based reference system is the impact the geometry of the measurements has on the

position solution. To show the geometry impacts the dilution of precision (DOP) was

calculated. Two DOP measurements are used to describe the geometry, horizontal

dilution of precision (HDOP) and vertical dilution of precision (VDOP). DOP is the

RMS error for the least squares position solution caused by 1 meter of RMS error in

the measurements [9].
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The HDOP and VDOP are based on the sensitivity matrix (H) for the single

di�erence carrier phase measurements. The �rst step is to calculate the DOP matrix

D.

D = (HTH)�1 (4.1)

The diagonal terms of the DOP matrix are used to calculate the DOP values. For

the case of HDOP the �rst two diagonal terms are used, representing the x and y

directions in the local frame.

HDOP =
p
D11 +D22 (4.2)

For the VDOP the third diagonal term of the DOP matrix (D) is used. The VDOP

is based on the error in the vertical direction of the local frame.

V DOP =
p
D33 (4.3)

More detail on DOP can be found in [21].

The horizontal geometry is very good, as shown in Figure 4.7. The RMS

horizontal position error is expected to be 10� 25cm, based on the HDOP and the

error in a single di�erence carrier phase measurement, which is approximately 10cm.

The RMS error in the vertical channel will be approximately 6�15 meters, based on

the VDOP shown in Figure 4.7. The Kalman �lter however will reduce the weighting

of the measurements when applying corrections to the vertical channel [9].

4.3 Simulation Results for Residual Monitoring Failure Detection

This section will show the results of the residual monitoring failure detection

algorithm, based on simulated errors in simulated pseudolite measurements. Simu-

lations are used in this work so errors could be analyzed in more detail. The ability

to navigate using real data is important, but the errors in real data are a combina-
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Figure 4.7: HDOP and VDOP based on the Pseudolite Network and Navigation
Trajectory.

tion of many factors. Simulations are necessary to validate the actual performance

of the failure detection algorithms. The simulations are based on using the true

carrier phase and true range measurements calculated from the true positions based

on DGPS. The true position was solved using NovAtel's Waypoint Inertial Explorer

Post-Processing Software [23]. The pseudolite measurement update rate for the sim-

ulations was set to 2Hz.

Two types of simulated errors were added to the true carrier phase measure-

ments. These errors included instantaneous cycle slips and slow growing errors. In

addition to these errors, white Gaussian noise was added to the true range mea-

surements and the simulated phase measurements. Instantaneous cycle slips are

characterized as errors that occur between samples. Cycle slips can be any magni-

tude and occur randomly in real measurements. In the simulation the size of the

cycle slip errors was varied from 0.5� to 10�, with a step size of 0.5�. This range of

wavelengths is where the detection algorithm's performance varies depending on the

4-9



likelihood function and inertial sensors used. A sample of a cycle slip was shown in

Figure 4.3. The second type of error analyzed in the simulations was the addition

of slow growing errors to the phase measurements. A slow growing error is charac-

terized by the amount the error grows over a number of samples. The slow growing

error occurred over 10 samples in all the simulations. This type of error is based

on the real pseudolite phase measurements, as seen in Figure 4.2. The slow growing

error rate was varied from 0:5 �
samp

to 10 �
samp

. The step size was 0:5 �
samp

for each

simulation.

4.3.1 Truth Source. The simulated measurements are based on a truth

source. The quality of the truth data will impact the simulation results. Figure 4.8

shows the 2DRMS of the estimated horizontal position error, based on the estimated

standard deviations provided by the Waypoint Post-Processing Software [23]. The

2DRMS was calculated using
p
�2n + �2e [21]. The GPS data and the HG1700 inertial

data were used to produce this solution. The average 2DRMS was approximately

1:5cm. The accuracy of the true navigation solution will aid in the calculating of the

true pseudolite measurements. Large variations of error in a truth source will cause

false detections in the failure detection algorithm.

4.3.2 Instantaneous Cycle Slips. In this set of simulations, the true carrier

phase measurements were combined with instantaneous cycle slips and measurement

noise. The simulations are based on the �eld experiments, so 20 carrier phase signals

were created. Instantaneous cycle slips were added to 4 of the 20 signals. The starting

points of each of the simulated errors were o�set by 15 samples|this was done so

the errors did not occur at the same time in multiple signals. The simulated cycle

slips were added every 200 samples. An example of one set of simulated cycle slips

is shown in Figure 4.9. In this example the cycle slip magnitude is 2 wavelengths.

Also a total of 25 cycle slips were added to this one signal. The sign of the cycle slip

was randomly assigned. The phase measurement update rate was 2Hz for a total
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Figure 4.8: Truth Source RMS Error (reported by Waypoint Post-Processing
Software).

of 4440 updates in this simulation. The simulation was repeated varying the size

of the cycle slip error from 0:5� to 10�, in increments of 0:5�. The results using

a 3� threshold and a 2:5� threshold for the residual monitoring failure detection

algorithm are shown below.

The �rst simulation based on instant cycle slips used a failure detection thresh-

old of 3�. For the residual distribution, 99:7% of the residuals should lie within 3�,

since the residual estimation is based on a normal distribution [20]. The failure de-

tection rate for both inertial sensors, shown in Figure 4.10, tends to be as expected.

The detection rate increases as the size of the errors grow. With the 3� threshold

the HG1700 system does not achieve 100% detection until the errors are 3:5� and

larger. The MIDG requires even larger errors (5:5�) to achieve until full detection.

The average detection delay using a 3� threshold to detect cycle slips is shown

in Figure 4.11. Detection delay is de�ned as the number of samples the error is

allowed to be incorporated into the �lter before being rejected by the failure detection

algorithm. The detection delay is reported only when the errors were large enough
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Figure 4.9: An Example of Simulated Cycle Slips with a Magnitude of 2�.

for the failure algorithm to detect errors. A spike occurs when the algorithm begins

to �nd some errors but it takes the �lter a number of samples to detect them. As

the magnitude of the cycle slip errors grow, the delay reaches zero. The HG1700

is capable of quickly detecting errors, as shown in Figure 4.11. The false alarms

for both inertial systems are shown in Figure 4.12. Since the threshold was set

to 3�, the number of false alarms were relatively low in both cases. The 2DRMS

horizontal position error is shown in Figure 4.13. The RMS error of the HG1700

system maintained a fairly consistent 2DRMS position error of approximately 20cm.

The MIDG had large uctuations of error in the position estimates. This error was

caused by not detecting the cycle slips. When the errors are small (less than a

wavelength) they do not cause a large amount of position error. The RMS error

grows as the cycle slip errors grow in size and the MIDG failure detection algorithm

misses detection.

The threshold of the residual monitoring method was decreased to 2:5�, since

a large number of small (less than 3 wavelengths) cycle slip errors were not detected

using either IMU. The detection rate for the 2:5� threshold is shown in Figure 4.14.
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Figure 4.10: Detection Rate for the Residual Monitoring Failure Detection
Algorithm, with Instant Cycle Slips (3� threshold).
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Figure 4.11: Detection Delay for the Residual Monitoring Failure Detection
Algorithm, with Instant Cycle Slips (3� threshold).

4-13



0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Cycle Slip Magnitude (wavelengths)

N
um

be
r o

f F
al

se
 A

la
rm

s

HG1700 INS
MIDG INS

Figure 4.12: False Alarms for the Residual Monitoring Failure Detection
Algorithm, with Instantaneous Cycle Slip Errors (3� threshold).
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Figure 4.13: 2DRMS Position Error for the Residual Monitoring Failure Detection
Algorithm, with Instantaneous Cycle Slip Errors (3� threshold).
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Figure 4.14: Detection Rate for the Residual Monitoring Failure Detection
Algorithm, with Instant Cycle Slips (2:5� threshold).

Reducing the threshold to 2:5� made it possible to detect 100% of the 3� cycle slips,

for the HG1700, and 5�, for the MIDG. The detection delay for the same case is

shown in Figure 4.15. The detection delay, in the case of the MIDG, decreased for

cycle slips that are 3� and larger. The HG1700 delay decreased signi�cantly (from

18 samples to 3 samples), in the case of 1 wavelength cycle slips. The false alarms are

shown in Figure 4.16. There were zero false alarms for the HG1700 case. This is a

small improvement, since there was only one false alarm using the 3� threshold. The

false alarms of the MIDG increased signi�cantly from the 3� case. This is caused

by a combination of the smaller threshold and missed detections causing error in the

�lter estimates. The 2DRMS horizontal position error is shown in Figure 4.17. The

error overall is reduced in both cases. The HG1700 maintains an accuracy of less

than 20cm. The MIDG has less error using the 2:5� threshold when the cycle slips

are 3� and larger. Figure 4.17 shows how the large number of false alarms increases

the 2DRMS in the case of the MIDG.

Using a smaller threshold (2:5�) allowed the �lter to detect and remove the

cycle slip errors at a higher probability, when compared to the 3� threshold results.
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Figure 4.15: Detection Delay for the Residual Monitoring Failure Detection
Algorithm for Instant Cycle Slips (2:5� threshold).
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Figure 4.16: False Alarms for the Residual Monitoring Failure Detection
Algorithm, with Instantaneous Cycle Slip Errors (2:5� threshold).
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Figure 4.17: 2DRMS Position Error for the Residual Monitoring Failure Detection
Algorithm, with Instantaneous Cycle Slip Errors (2:5� threshold).

Higher detection rates lead to the increased position accuracy when using the 2:5�

threshold, with both inertial systems. The residual monitoring method is appropriate

for detecting cycle slips as small as 3�, when using the HG1700 IMU.

4.3.3 Slow Growing Error Detection. Slow growing errors grow over a

period of multiple samples. The slow growing errors were simulated to occur over

a 10 sample period. An example of the simulated slow growing errors is shown

in Figure 4.18. In this example the error rate is 2 �
samp

, thus the errors grow to

approximately 2.5 meters over 10 samples. Also in this example only four of the

slow growing errors are shown in the �gure below. The slow growing errors were

added to the true phase measurement every 100 samples, for a total of 49 slow

growing errors on each of the four designated signals. The simulations consist of

using 20 carrier phase measurements at a time, the same as the �eld test work. Four

of these twenty signals contain slow growing errors. The statistics below are based

on the entire set of samples for each run. The inertial-based navigations systems are
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Figure 4.18: An Example of a Simulated Slow Growing Errors with a Growth Rate
of 2 �

samp
.

compared through common characteristics|the detection rate, the detection delay,

and the false alarms in each subset.

The �rst set of simulations using the slow growing errors used a 3� threshold

in the residual failure detection algorithm. The detection rates for the HG1700 and

MIDG are shown in Figure 4.19. Both sensors had high detection rates for even

small errors. The detection delays for this case of slow growing errors are shown

in Figure 4.20. The delay in the detections was signi�cant with both IMUs for the

0:5 �
samp

error.

The HG1700 has a detection delay larger than 1 sample for errors that grow

less than 3 �
samp

. The MIDG delays are more profound, since the 1 sample detections

do not start until the error growth rate reaches 5 �
samp

. During the delays, the errors

are being incorporated into the �lter estimates. In this simulation, the �lter does

not diverge since the errors only occur in 4 of the 20 signals. The false alarms

are shown in Figure 4.21. There are no false alarms when using the HG1700 with

a 3� threshold. The 2DRMS horizontal position error is shown in Figure 4.22.
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Figure 4.19: Detection Rate for Residual Monitoring Failure Detection Algorithm
in the Case of Various Slow Growing Error Rates (3� threshold).

The position estimates from the MIDG navigation �lter were double the size as the

HG1700 navigation �lter.

The idea was to reduce the threshold to 2.5� to try to reduce the number of

samples required to detect the failure. The detection rates for this case are shown

in Figure 4.23. The detection rates remain the same except for one exception, the

MIDG increased to a 80% detection rate in the 0:5 �
samp

case. The HG1700 does have

a slightly faster detection time for the case 0:5 �
samp

, shown in Figure 4.24. The slow

growing error simulation has shown the MIDG can detect small growing errors well

when using a 2.5� threshold. The false alarms are shown in Figure 4.25. The MIDG

False alarms increased for all the measurements. There is a false alarm consistent

with all the simulations|this is most likely due to a slight variation from one epoch

to the next in the truth data. The 2DRMS horizontal position error is shown in

Figure 4.26. Reducing the threshold leads to more accurate position estimates using

both IMUs.

Reducing the threshold increases the accuracy of the MIDG navigation �lter.

A small amount of the position estimate improvement in the two cases can be con-
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Figure 4.20: Detection Delay for Residual Monitoring Failure Detection Algorithm
in the Case of Various Slow Growing Error Rates (3� threshold).
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Figure 4.21: False Alarms for Residual Monitoring Failure Detection Algorithm in
the Case of Various Slow Growing Error Rates (3� threshold).
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Figure 4.22: 2DRMS Position Error for Residual Monitoring Failure Detection
Algorithm in the Case of Various Slow Growing Error Rates (3� threshold).
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Figure 4.23: Detection Rate for Residual Monitoring Failure Detection Algorithm
with Various Slow Growing Error Rates (2:5� threshold).
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Figure 4.24: Detection Delay for Residual Monitoring Failure Detection Algorithm
with Various Slow Growing Error Rates (2:5� threshold).
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Figure 4.25: False Alarms for Residual Monitoring Failure Detection Algorithm
with Various Slow Growing Error Rates (2:5� threshold).
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Figure 4.26: 2DRMS Position Error for Residual Monitoring Failure Detection
Algorithm with Various Slow Growing Error Rates (2:5� threshold).

tributed to the random nature of how the simulation data was created. The random

noise of the pseudorange measurements can impact the estimated position, since the

pseudoranges are used to re-initialize the ambiguities. The pseudoranges have an

error variance of 2.5 meters. Overall the position estimates are better with the 2.5�

threshold|this is due to faster detections.

4.4 Testing the Moving Window Failure Detection using Simulations

This section focuses on the results of using a moving window failure detection

algorithm to detect simulated errors. The moving window likelihood function de-

scribed in Section 3.3.2 was implemented using both INS navigation systems, the

MIDG and the HG1700. There are two cases that were simulated using the moving

window method. The �rst analyzed the instantaneous cycle slips, while the other

focused on the slow growing errors. Simulations in this section were developed and

conducted in the same fashion as the ones in Section 4.3. The threshold for the

moving window function was the same for both of the cases that were simulated.
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4.4.1 Instantaneous Cycle Slips. The �rst set of simulations analyzed

instantaneous cycle slips errors in the carrier phase measurements. The detection

rates shown in Figure 4.27 can be compared with the residual monitoring (2:5�

threshold) technique shown in Figure 4.14. The HG1700 and MIDG can achieve

100% detection rate for cycle slips of 2 and 3.5 wavelengths, respectively, when using

the moving window method. This is an improvement over the residual monitoring

technique for both IMUs.

One issue with the moving window algorithm was that the detection delay,

shown in Figure 4.28, increased over the residual monitoring technique (from Figure

4.10). The detection delay for the MIDG increased for the very small cycle slips,

which is shown in Figure 4.28. The delay in detection using the window method

for the HG1700 increased overall. The HG1700 had signi�cant detection delays for

detecting cycle slips smaller than 3�, when compared to the residual method with the

2:5� threshold (shown in Figure 4.15). In general, the windowing method requires

more samples to detect a failure. This is due to the algorithm of the windowing

function.

The False alarms are shown in Figure 4.30. The false alarms for the MIDG

are much higher using the window method then the residual monitoring technique.

The large delay in detection and the high number of false alarms cause errors in the

navigation solution for the MIDG system. The position error DRMS for both systems

is shown in Figure 4.29. The HG1700 maintains better than 15cm of horizontal

position error. The MIDG error varies over the test period, reaching as high as 70cm

of DRMS position error.

The MIDG was capable of more accurate position estimates using the window

method compared to the residual monitoring technique, as seen by comparing Figures

4.17 and 4.29. This is driven by the higher detection rates when using the moving

window method. The HG1700 was also capable of more accurate position estimates

with cycle slips of 1� and less, when using the window method. The window method
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Figure 4.27: Detection Rates when using Moving Window Failure Detection
Algorithm, with Cycle Slip Errors.
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Figure 4.28: Detection Delay when using Moving Window Failure Detection
Algorithm, with Cycle Slip Errors.
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Figure 4.29: 2DRMS Position Error when using Moving Window Failure Detection
Algorithm, with Cycle Slip Errors.
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Figure 4.30: False Alarms for the Detection of Cycle Slips, using the Moving
Window Failure Detection Algorithm.
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does attain higher detection rates than the residual method, but also can have a

small delay. From these results the small delay does not seem to impact the overall

position error.

4.4.2 Slow Growing Error Detection. The second case of analyzing the

moving window method was to test the algorithm by simulating slow growing errors.

The errors were added to the true phase measurements in the same manner as

described in Section 4.3. The probability of detection is shown in Figure 4.31. The

probability of detecting 0:5 �
samp

errors for the MIDG was nearly 99% when using the

window failure detection algorithm. This is an increase in detection of 19% from the

residual monitoring method.

The delay of detection for both IMUs never hits 1 sample, shown in Figure

4.32. The detection delay is due to the moving window algorithm. When there is a

failure present, the moving window algorithm surpasses the threshold approximately

one sample later than the residual monitoring technique.

The 2DRMS position error of the MIDG system (Figure 4.33) reached as much

as 40cm. The HG1700 position error 2DRMS was above 20cm on three occasions

(Figure 4.33). This error for both systems stems from the inability of this technique

to detect 100% of the failures, with the smallest possible delay, and no false alarms.

In Figure 4.34, the false alarms for both inertial systems is shown. The HG1700

has zero false alarms over the course of the cases tested. The MIDG has several false

alarms at each case. These false alarms occurred in the same location for each

simulation run when using the MIDG inertial data. The inertial data of the MIDG

estimates the phase measurements inaccurately at the speci�c interval, causing the

false alarms.

The moving window function detected a higher rate of failures than the residual

monitoring method, for the smallest of small growing errors. The windowing function
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Figure 4.31: Detection Rates when using Moving Window Failure Detection
Algorithm, with Slow Growing Errors.

does have a small delay. This is most likely due to the 10 samples the window method

uses to calculate the likelihood.

4.5 Field Test Navigation Results

The true trajectory was calculated from the GPS measurements using NovA-

tel's Waypoint Post-Processing Software [23]. Waypoint provided an estimated RMS

accuracy of 2cm or less in horizontal position error and 4cm or less in vertical po-

sition error. The attitude information used as the truth data for the �eld test was

from the NovAtel Black Diamond System (BDS). Both inertial sensors were used

to process the navigation data twice. The �rst run used the residual monitoring

failure detection algorithm, while the second run used the moving window function

as the failure detection algorithm. The threshold for the residual monitoring failure

detection algorithm was set to 3�. This threshold gave the best results in terms of

RMS position error.

The position error for pseudolite carrier phase navigation and residual moni-

toring algorithm, using the HG1700 IMU, is shown in Figure 4.35. The true position
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Figure 4.32: Detection Delay when using Moving Window Failure Detection
Algorithm, with Slow Growing Errors.
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Figure 4.33: 2DRMS Position Error when using Moving Window Failure Detection
Algorithm, with Slow Growing Errors.
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Figure 4.34: False Alarms for the Detection of Slow Growing Errors, using the
Moving Window Failure Detection Algorithm.

error is bounded by the estimated 1� standard deviation of the error. The position

errors for the pseudolite/MIDG navigation system are shown in Figure 4.36. The

trajectory in Figure 4.4 was used in both cases.

The position errors of the navigation system using the moving window failure

detection algorithm are shown below. Figure 4.37 shows the results when using the

HG1700, while Figure 4.38 shows the position errors when using the MIDG IMU.

Both �gures include the estimated 1� bound of the position errors.

The navigation position errors for each case are shown in Table 4.1. The

HG1700 provided an improvement of around 2-3cm over the MIDG in horizontal

positioning. The errors between the two failure detection algorithms were similar,

with some small variations. The moving window function performed better than

the residual monitoring failure detection when using the HG1700. The residual

monitoring was slightly better than the moving window when using the MIDG. The

moving window function performs best when residuals before the failure contain the
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Figure 4.35: True Position Error shown in the NED Frame for the HG1700 based
Navigation System (Blue). The Residual Monitoring Failure Detection Algorithm

was use in this Case. The Estimated 1� Error Bound is shown in Red.
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Figure 4.36: True Position Error shown in the NED Frame for the MIDG Based
Navigation System (Blue). The Residual Monitoring Failure Detection Algorithm

was use in this Case. The Estimated 1� Error Bound is shown in Red.
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Figure 4.37: True Position Error shown in the NED Frame for the HG1700 based
Navigation System (Blue). The Likelihood Function was the Moving Window

Algorithm. The Estimated 1� Error Bound is shown in Red.
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Figure 4.38: True Position Error shown in the NED Frame for the MIDG Based
Navigation System (Blue). The Likelihood Function was the Moving Window

Algorithm. The Estimated 1� Error Bound is shown in Red.
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Table 4.1: RMS Position Error of Navigation Filter in Real Data using Multiple
Failure Detection Scenarios

Failure Detection Algorithm Position Error HG1700 MIDG

Residual Monitoring
2DRMS (m)
3DRMS (m)

0.08
2.89

.105
3.08

Moving Window
2DRMS (m)
3DRMS (m)

0.077
2.22

.117
3.26

least error. The HG1700 produces lower residuals then does the MIDG, causing the

window method to work better with the HG1700.

4.5.1 Failure Detection in the Pseudolite Measurements. The single dif-

ference pseudolite measurement availability is shown in Figure 4.39. The available

measurements are shown in green, while the rejected measurements are shown in

the black. The rejected measurements were detected using the failure detection al-

gorithm, in this case the residual monitoring based algorithm. The coverage plot

shows a large number of rejections for multiple observations (1, 3, 8, 17, and 19)|

this is due to a combination of two issues. The �rst issue was that these signals

did not go into phase lock until approximately 900 seconds into the navigation pe-

riod. During this time the phase measurements were oscillating, thus the failure

detection algorithm was working as it should by rejecting the phase measurements

as cycle slips. The second issue was that once the signals were in phase lock their

corresponding ambiguity was not accurately initialized causing the single di�erence

measurement to be rejected at each epoch. This issue stems from the roll-over cor-

rection that was made to the pseudorange measurements, causing the initialization

of the ambiguities to be inaccurate. The coverage plot also shows observations 17,

18, and 19 do not provided coverage after 1700 seconds. The cause of the coverage

to drop from these measurements was due to power loss in the number 6 pseudolite

tower.
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Figure 4.39: The Pseudolite Coverage from the Area B Runway Test. The Failure
Detections of the Single Di�erence Observations are shown in Black. The Valid

Single Di�erenced Pseudolite Measurements are shown in Green.

4.6 Combined Failure Detection Algorithm

The residual monitoring technique has been shown to have faster failure detec-

tions then the moving window method overall. But the moving window algorithm

was able to detect smaller errors at a higher probability then the residual monitoring

method. This leads to the idea of combining both failure detection methods to detect

the highest number of failures with the highest probability. This could be done by

using the multiple model approach laid out in Section 2.8.

The residual monitoring technique should be implemented with an aggressive

threshold (e.g., 2�) that will increase the capability to detect small errors. This will

lead to a number of false alarms that can be mitigated by using the moving window

algorithm as the hypothesis test to determine if a failure actually occurred in a �lter.

Using this technique should increase the ability to detect smaller cycle slips and slow

growing errors more accurately.
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4.7 Summary

Discussed in this chapter was the implementation and results of two di�erent

failure detection algorithms. The algorithm experiments were derived from both

�eld tests and simulation work. Each case was presented to show the statistical

characteristics of performance. These statistics consisted for detection rate, detec-

tion delay, and false alarms. Both failure detection algorithms were shown to be

able to detect cycle slips and slow growing errors in the pseudolite carrier phase

measurements. This chapter also showed that using a failure detection algorithm

with a MIDG inertial sensor can achieve decimeter accuracy when integrated with a

pseudolite positioning system.
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V. Conclusion

5.1 Overview

This thesis presented two methods for detecting failures in pseudolite phase

measurements. The purpose of a failure detection algorithm is to detect and re-

move cycle slips and slow growing errors that commonly occur in pseudolite phase

measurements. This e�ort was inspired by past work that relied on the SNR mea-

surements to detect cycle slips. The removal of cycle slips and slow growing errors

improves the reliability and accuracy of the pseudolite measurements.

The �rst failure detection method used a residual monitoring approach to de-

termine if a failure occurred. In this method a set threshold (number of standard

deviations) was used to evaluate the residual and declare a failure. The second

method used a moving window function to detect errors in the update step of the

�lter algorithm. The moving window uses a prede�ned number of samples (N) to

evaluate the likelihood of a failure. Each sample is based on the ratio of the residual

and variance. This method depends on the previous residuals as well as the current

residual.

The navigation system consisted of a pseudolite network and an inertial sensor

integrated through an error state extended Kalman �lter. The update measurements

of the pseudolite system were in the form of single di�erenced observables. Two

di�erent inertial sensors, a Honeywell HG1700 and a Microbotics MIDG II, were

used in the �lter to analyze the impact of inertial quality in determining failures.

Implementing a navigation reference system in a �eld experiment showed the

capability of the failure detection algorithm to identify and remove the errors in

actual phase measurements and achieve decimeter accuracy. The navigation refer-

ence system consisted of the pseudolite and inertial sensors, plus a GPS reference

receiver. The truth source was calculated using NovAtel's Waypoint Post-Processing
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Software [23]. Developing simulations based on this data allowed the algorithms to

be characterized down to the performance of each inertial sensor.

5.2 Conclusions

Integrating a pseudolite-based network with inertial measurements is an ef-

fective way of detecting cycle slips. The tightly integrated pseudolite and inertial

measurements led to the ability to detect and remove the errors in the carrier phase

measurements. Once the cycle slips are detected the ambiguity for that correspond-

ing measurement is re-initialized to the new value. The residual monitoring technique

to determine the failures proved to be an accurate and e�ective method. The residual

monitoring method is considered e�ective in the sense that the algorithm used infor-

mation available in the Kalman �lter to detect and remove errors in raw pseudolite

measurements, such as the cycle slips and slow growing errors. This increased the

reliability in the navigation system. This is the �rst step in developing the integrity

of a pseudolite system.

Failure detection performance was improved by all measures when using the

higher quality INS. A higher quality IMU will measure the trajectory more precisely

in between updates, thus calculating the residual more precisely and providing the

failure detection algorithm a more accurate estimation of the errors in the measure-

ments. This was shown through the use of the HG1700 IMU. The comparison of

the two inertial sensors revealed that the Honeywell HG1700 outperforms the Mi-

crobotics MIDG in terms capability to detect failures. The MIDG is capable of

detecting cycle slips and slow growing errors when using a failure detection algo-

rithm, but the HG1700 was able to detect a higher rate of failures in fewer samples.

The residual monitoring method was able to detect cycle slips more quickly

than the moving window algorithm. Comparing the detection delays of the residual

monitoring method shows the HG1700 was capable of detecting slow growing errors

5-2



of 2.5 �
samp

and larger in one sample, while the moving window algorithm could not

detect any errors in one sample for the same scenario.

The threshold for the residual monitoring failure detection algorithm performed

best when set to 2.5�. The MIDG did have a number of false alarms when using the

2.5� threshold, but had higher detection rates and required less samples to detect a

failure. In the end, the HG1700 performed e�ectively using a 2.5� threshold. The

simulation results showed the HG1700 performed very well in both algorithms that

were implemented. The HG1700 was limited to detecting the instant cycle slips of 3

wavelengths and larger, when using the residual monitoring method.

The moving window method was able to detect more cycle slips than the

residual monitoring method. The detection rate of cycle slips with a magnitude of

3 wavelengths, when using the MIDG, increased from 54%, when using the residual

monitoring technique, to 95%, when using the moving window method. The moving

window function was capable of detecting instantaneous cycle slips of 1.5 wavelengths

at 96% when using the HG1700, where only 20% were detected when using the

residual monitoring method.

There are many issues when using the moving window technique as the like-

lihood function in the failure detection algorithm. The windowing method uses N

number of previous residuals, thus noise and other errors tend to contribute to the

likelihood of failure value. This can lead to false alarms as seen when using a lower

quality IMU such as the MIDG.

The results in this research have lead to the idea of using a combined failure

detection approach to maximize the capabilities of detecting errors. In this approach

the residual monitoring algorithm would be used to detect the failures quickly. While

the moving window algorithm would then be used to con�rm there was a failure

through a multiple model approach, as explained in Section 4.6.
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5.3 Recommendations

Implementation of the failure detection algorithms in this work has increased

the reliability and accuracy of the pseudolite-based reference system. Some improve-

ments to the failure detection algorithm could improve the ability to detect smaller

errors. Removing the errors will in turn lead to a more accurate navigation solution.

The following areas could build on this work for improving the pseudolite referencing

system:

� Explore the bene�ts of using a navigation grade IMU, such as the HG-764.

Increasing the accuracy of the navigation solution in the propagation state can

make the detection of smaller errors possible.

� Develop a technique to quantify the integrity of the pseudolite-based navigation

system.

� Implement a failure detection algorithm that uses both the residual monitoring

method and the moving window function. This could be done in a multiple

model approach such as described in Section 4.6.

� Implementation of a multiple model failure detection approach would be the

next algorithm to implement. In this concept, the idea is to run a new �lter

based on a hypothesis of failure detection, while keeping the original �lter.

Running both �lters in parallel will continue until one diverges or is proven

to be true through a hypothesis test. Overall this should do two things|

assure the �lter does not diverge and keep the inertial measurements from

causing false detections. The quality of the inertial sensor has had a large

impact on the failure detection, as seen in the false alarms of the MIDG. Using

a �lter algorithm that spawns a new �lter at each failure could reduce the

impact of false alarms. The failure detection in each �lter can use the residual

monitoring technique laid out in this work, although other methods could also

be implemented.
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